
Roboception GmbH | April 2021rc_cube Accelerator for rc_visard
ASSEMBLY AND OPERATING MANUAL

Revisions
This product may be modified without notice, when necessary, due to product improvements, modifications, or

changes in specifications. If such modification is made, the manual will also be revised; see revision information.

DOCUMENTATION REVISION 21.04.0 Apr 15, 2021
Applicable to rc_cube firmware 21.04.x

MANUFACTURER
Roboception GmbH
Kaflerstrasse 2

81241 Munich

Germany

CUSTOMER SUPPORT: support@roboception.de | +49 89 889 50 79-0 (09:00-17:00 CET)

Please read the operating manual in full and keep it with the product.
COPYRIGHT
This manual and the product it describes are protected by copyright. Unless permitted by German intellectual prop-

erty and related rights legislation, any use and circulation of this content requires the prior consent of Roboception

or the individual owner of the rights. This manual and the product it describes therefore, may not be reproduced

in whole or in part, whether for sale or not, without prior written consent from Roboception.

Information provided in this document is believed to be accurate and reliable. However, Roboception assumes no

responsibility for its use.

Differences may exist between the manual and the product if the product has been modified after the manual’s

edition date. The information contained in this document is subject to change without notice.

Roboception GmbH

Manual: rc_cube

1 Rev: 21.04.0

Status: Apr 15, 2021

mailto:support@roboception.de

Contents

Contents
1 Introduction 5
1.1 Overview . 5

1.2 Warranty . 7

1.3 Applicable standards . 8

1.3.1 Interfaces . 8

1.4 Glossary . 9

2 Safety 11
2.1 General warnings . 11

2.2 Intended use . 11

3 Installation 13
3.1 Installation and configuration . 13

3.2 Software license . 13

3.3 Power up . 14

3.4 Discovery of rc_cube devices . 14
3.4.1 Resetting configuration . 14

3.5 Network configuration . 14

3.5.1 Host name . 16

3.5.2 Automatic configuration (factory default) . 16

3.5.3 Manual configuration . 16

4 Measurement principles 17
4.1 Stereo vision . 17

5 Software modules 19
5.1 3D camera modules . 19

5.1.1 Stereo camera . 19

5.1.2 Stereo matching . 27

5.2 Detection modules . 36

5.2.1 LoadCarrier . 36

5.2.2 TagDetect . 51

5.2.3 ItemPick and BoxPick . 62

5.2.4 SilhouetteMatch . 83

5.2.5 CADMatch . 109

5.3 Configuration modules . 131

5.3.1 Hand-eye calibration . 131

5.3.2 Region of interest . 148

5.3.3 CollisionCheck . 154

5.3.4 IO and Projector Control . 167

6 Interfaces 171
6.1 Web GUI . 171

6.1.1 Accessing the Web GUI . 171

6.1.2 Exploring the Web GUI . 172

6.1.3 Downloading stereo camera images . 173

Roboception GmbH

Manual: rc_cube

2 Rev: 21.04.0

Status: Apr 15, 2021

Contents

6.1.4 Downloading depth images and point clouds . 173

6.2 GigE Vision 2.0/GenICam image interface . 174

6.2.1 GigE Vision ports . 174

6.2.2 Important GenICam parameters . 174

6.2.3 Important standard GenICam features . 174

6.2.4 Custom GenICam features of the rc_cube . 179
6.2.5 Chunk data . 182

6.2.6 Provided image streams . 182

6.2.7 Image stream conversions . 183

6.3 REST-API interface . 184

6.3.1 General API structure . 184

6.3.2 Available resources and requests . 186

6.3.3 Data type definitions . 205

6.3.4 Swagger UI . 213

6.4 KUKA Ethernet KRL Interface . 218

6.4.1 Ethernet connection configuration . 219

6.4.2 Generic XML structure . 219

6.4.3 Services . 220

6.4.4 Parameters . 224

6.4.5 Example applications . 226

6.5 gRPC image stream interface . 226

6.5.1 gRPC service definition . 226

6.5.2 Image stream conversions . 228

6.5.3 Limitations . 228

6.5.4 Example client . 228

6.6 Time synchronization . 228

6.6.1 NTP . 228

6.6.2 PTP . 228

7 Maintenance 229
7.1 Creating and restoring backups of settings . 229

7.2 Updating the firmware . 229

7.3 Restoring the previous firmware version . 231

7.4 Rebooting the rc_cube . 231
7.5 Updating the software license . 231

7.6 Downloading log files . 231

8 Troubleshooting 232
8.1 Camera-image issues . 232

8.2 Depth/Disparity, error, and confidence image issues . 232

8.3 GigE Vision/GenICam issues . 234

9 Contact 235
9.1 Support . 235

9.2 Downloads . 235

9.3 Address . 235

10 Appendix 236
10.1 Pose formats . 236

10.1.1 Rotation matrix and translation vector . 237

10.1.2 ABB pose format . 237

10.1.3 FANUC XYZ-WPR format . 237

10.1.4 Kawasaki XYZ-OAT format . 238

10.1.5 KUKA XYZ-ABC format . 239

10.1.6 Mitsubishi XYZ-ABC format . 239

10.1.7 Universal Robots pose format . 240

HTTP Routing Table 242

Roboception GmbH

Manual: rc_cube

3 Rev: 21.04.0

Status: Apr 15, 2021

Contents

Index 243

Roboception GmbH

Manual: rc_cube

4 Rev: 21.04.0

Status: Apr 15, 2021

1 Introduction
Indications in the manual
To prevent damage to the equipment and ensure the user’s safety, this manual indicates each precau-

tion related to safety with Warning. Supplementary information is provided as a Note.

Warning: Warnings in this manual indicate procedures and actions that must be observed to avoid
danger of injury to the operator/user, or damage to the equipment. Software-related warnings in-

dicate procedures that must be observed to avoid malfunctions or unexpected behavior of the soft-

ware.

Note: Notes are used in this manual to indicate supplementary relevant information.

1.1 Overview
The rc_cube is a high-performance 3D-image-processing device that is developed to enhance the com-
puting capabilities of the Roboception stereo-camera rc_visard.
The rc_cube provides real-time camera images and disparity images, which can also be used to compute
depth images and 3D point clouds. Additionally, it provides confidence and error images as quality

measures for each image acquisition. It offers an intuitive web UI (user interface) and a standardized

GenICam interface, making it compatible with all major image processing libraries.

With optionally available software modules the rc_cube provides out-of-the-box solutions for object de-
tection and robotic pick-and-place applications.

Roboception GmbH

Manual: rc_cube

5 Rev: 21.04.0

Status: Apr 15, 2021

1.1. Overview

Fig. 1.1: rc_visard 65 and rc_visard 160

Note: Unless specified, the information provided in this manual applies to both the rc_visard 65 andrc_visard 160 versions of the Roboception sensor.

Fig. 1.2: The rc_cube

Note: This manual uses the metric system and mostly uses the units meter and millimeter. Unless
otherwise specified, all dimensions in technical drawings are in millimeters.

Roboception GmbH

Manual: rc_cube

6 Rev: 21.04.0

Status: Apr 15, 2021

1.2. Warranty

1.2 Warranty
Any changes or modifications to the hard- and software not expressly approved by Roboception could

void the user’s warranty and guarantee rights.

Warning: The rc_cube utilizes complex hardware and software technology that may behave in a way
not intended by the user. The purchaser must design its application to ensure that any failure or therc_cube does not cause personal injury, property damage, or other losses.

Warning: Do not attempt to take apart, open, service, or modify the rc_cube. Doing so could
present the risk of electric shock or other hazard. Any evidence of any attempt to open and/or

modify the device, including any peeling, puncturing, or removal of any of the labels, will void the

Limited Warranty.

Warning: CAUTION: to comply with the European CE requirement, all cables used to connect this
device must be shielded and grounded. Operation with incorrect cables may result in interference

with other devices or undesired effects of the product.

Note: This product may not be treated as household waste. By ensuring this product is disposed of
correctly, you will help to protect the environment. For more detailed information about the recycling

of this product, please contact your local authority, your household waste disposal service provider,

or the product’s supplier.

Roboception GmbH

Manual: rc_cube

7 Rev: 21.04.0

Status: Apr 15, 2021

1.3. Applicable standards

1.3 Applicable standards
1.3.1 Interfaces
The rc_cube supports the following interface standards:

The Generic Interface for Cameras standard is the basis for plug & play handling of cameras and devices.

GigE Vision® is an interface standard for transmitting high-speed video and related control data over

Ethernet networks.

Roboception GmbH

Manual: rc_cube

8 Rev: 21.04.0

Status: Apr 15, 2021

http://www.genicam.org/
http://www.gigevision.com

1.4. Glossary

1.4 Glossary
DHCP The Dynamic Host Configuration Protocol (DHCP) is used to automatically assign an IP address

to a network device. Some DHCP servers only accept known devices. In this case, an administrator

needs to configure the DHCP server with the fixed MAC address of a device.
DNS
mDNS The Domain Name Server (DNS) manages the host names and IP addresses of all network de-

vices. It is responsible for resolving the host name into the IP address for communication with

a device. A DNS can be configured to get this information automatically when a device appears

on a network or manually by an administrator. In contrast, multicast DNS (mDNS) works without
a central server by querying all devices on a local network each time a host name needs to be

resolved. mDNS is available by default on Linux and Mac operating systems and is used when

‘.local’ is appended to a host name.

DOF The Degrees Of Freedom (DOF) are the number of independent parameters for translation and
rotation. In 3D space, 6 DOF (i.e. three for translation and three rotation) are sufficient to describe

an arbitrary position and orientation.

GenICam GenICam is a generic standard interface for cameras. It serves as a unified interface around

other standards such as GigE Vision, Camera Link, USB, etc. See http://genicam.org for more infor-
mation.

GigE Gigabit Ethernet (GigE) is a networking technology for transmitting data at one gigabit per second.
GigE Vision GigE Vision® is a standard for configuring cameras and transmitting images over a GigE

network link. See http://gigevision.com for more information.

IP
IP address The Internet Protocol (IP) is a standard for sending data between devices in a computer

network. Every device requires an IP address, which must be unique in the network. The IP

address can be configured by DHCP, Link-Local, or manually.
Link-Local Link-Local is a technology where network devices associate themselves with an IP address

from the 169.254.0.0/16 IP range and check if it is unique in the local network. Link-Local can be

used if DHCP is unavailable and manual IP configuration is not or cannot be done. Link-Local is
especially useful for connecting a network device directly to a host computer. By default, Windows

10 reverts automatically to Link-Local if DHCP is unavailable. Under Linux, Link-Local must be

enabled manually in the network manager.

MAC address The Media Access Control (MAC) address is a unique, persistent address for networking
devices. It is also known as the hardware address of a device. In contrast to the IP address, the
MAC address is (normally) permanently given to a device and does not change.

NTP The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network. Basi-
cally a client requests the current time from a server, and uses it to set its own clock.

SDK A Software Development Kit (SDK) is a collection of software development tools or a collection of
software components.

SGM SGM stands for Semi-Global Matching and is a state-of-the-art stereo matching algorithm which

offers short run times and a great accuracy, especially at object borders, fine structures, and in

weakly textured areas.

TCP The Tool Center Point (TCP) is the position of the tool at the end effector of a robot. The position
and orientation of the TCP determines the position and orientation of the tool in 3D space.

URI
URL A Uniform Resource Identifier (URI) is a string of characters identifying resources of the rc_cube’s

REST-API. An example of such a URI is /nodes/rc_stereocamera/parameters/fps, which points to
the fps run-time parameter of the stereo camera module.

Roboception GmbH

Manual: rc_cube

9 Rev: 21.04.0

Status: Apr 15, 2021

http://genicam.org
http://gigevision.com

1.4. Glossary

A Uniform Resource Locator (URL) additionally specifies the full network location and proto-

col, i.e., an exemplary URL to locate the above resource would be https://<ip>/api/v1/nodes/
rc_stereocamera/parameters/fps where <ip> refers to the rc_cube’s IP address.

XYZ+quaternion Format to represent a pose. See Rotation matrix and translation vector (Section 10.1.1)
for its definition.

XYZABC Format to represent a pose. See KUKA XYZ-ABC format (Section 10.1.5) for its definition.

Roboception GmbH

Manual: rc_cube

10 Rev: 21.04.0

Status: Apr 15, 2021

2 Safety
Warning: The operator must have read and understood all of the instructions in this manual before
handling the rc_cube product.

Warning: If operating the rc_cubewith rc_visard product(s), the operator must have read and under-
stood all of the safety, installation, and maintenance instructions given in the rc_visardmanual.

Note: The term “operator” refers to anyone responsible for any of the following tasks performed in

conjunction with rc_cube:
• Installation

• Maintenance

• Inspection

• Calibration

• Programming

• Decommissioning

This manual explains the rc_cube’s various components and general operations regarding the product’s
whole life-cycle, from installation through operation to decommissioning.

The drawings and photos in this documentation are representative examples; differences may exist

between them and the delivered product.

2.1 General warnings
Note: Any use of the rc_cube in noncompliance with these warnings is inappropriate and may cause
injury or damage as well as void the warranty.

Warning:
• The rc_cube’s and any related equipment’s safety guidelines must always be satisfied.
• The rc_cube does not fall under the purview of the machinery or medical directives.

2.2 Intended use
The rc_cube is intended to be used in combination with a Roboception rc_visard device for data acqui-
sition (e.g., stereo images). It is furthermore intended to process that data using 3D-image processing

algorithms to serve in applications such as object detection or robotic pick-and-place.

Roboception GmbH

Manual: rc_cube

11 Rev: 21.04.0

Status: Apr 15, 2021

2.2. Intended use

Warning: The rc_cube is only intended for stationary installation.

Warning: The rc_cube is NOT intended for safety critical applications.
The GigE Vision® industry standard used by the rc_cube does not support authentication and encryp-
tion. All data from and to the device is transmitted without authentication and encryption and could be

monitored or manipulated by a third party. It is the operator’s responsibility to connect the rc_cube only
to a secured internal network.

Warning: The rc_cubemust be connected to secured internal networks.
The rc_cubemay be used only within the scope of its technical specification. Any other use of the product
is deemed unintended use. Roboception will not be liable for any damages resulting from any improper

or unintended use.

Warning: Always comply with local and/or national laws, regulations and directives on automation
safety and general machine safety.

Roboception GmbH

Manual: rc_cube

12 Rev: 21.04.0

Status: Apr 15, 2021

3 Installation
Warning: The instructions on Safety (Section 2) related to the rc_cubemust be read and understood
prior to installation.

3.1 Installation and configuration
The rc_cube offers two Gigabit Ethernet interfaces: one for connecting the device to a local computer
network, and the other for connecting the rc_visard. Both are marked with respective labels. All other
Ethernet ports are disabled.

For commissioning, operation, or troubleshooting the user can connect input devices such as a mouse

and a keyboard as well as a computer screen directly to the rc_cube. However, this is optional as the
functionality of the rc_cube is fully accessible via the local network it is connected to.
Note: If a screen is used on the rc_cube, it must be connected before booting, or the rc_cubemust be
restarted to activate the screen.

3.2 Software license
Every rc_cube device ships with a USB dongle for licensing and protection of the installed software pack-
ages. The purchased software licenses are installed on and are bound to this dongle and its ID.

The functionality of the rc_cube can be enhanced anytime by upgrading the license (Section 7.5), e.g., for
optionally available software modules.

Note: The rc_cube requires to be rebooted whenever the installed licenses have changed.
Note: The dongle ID and the license status can be retrieved via the rc_cube’s various interfaces such
as the System tab of the Web GUI (Section 6.1).
Note: For the software components to be properly licensed, the USB dongle must be plugged to therc_cube before power up.
Note: The rc_cube requires to be rebooted, whenever the license dongle is plugged to or unplugged
from the device.

Roboception GmbH

Manual: rc_cube

13 Rev: 21.04.0

Status: Apr 15, 2021

3.3. Power up

3.3 Power up
The rc_cube is booted by using the power switch on the device. If a computer screen is connected it will
display the rc_cube’s Web GUI when the boot process is finished.
Note: For successful operation please make sure that the rc_visard being connected to the rc_cube is
powered and booted.

3.4 Discovery of rc_cube devices
Roboception rc_cube devices that are powered up and connected to the local network or directly to a
computer can be found using the standard GigE Vision® discovery mechanism.

Roboception offers the open-source tool rcdiscover-gui, which can be downloaded free of charge
from http://www.roboception.com/download for Windows and Linux. The tool’s Windows version con-

sists of a single executable for Windows 7 and Windows 10, which can be executed without installation.

For Linux an installation package is available for Ubuntu.

At startup, all available GigE Vision® devices – including rc_cube devices – are listed with their names,
serial numbers, current IP addresses, and unique MAC addresses. The discovery tool finds all devices

reachable by global broadcasts. Misconfigured devices that are located in different subnets than the

application host may also be listed. A tickmark in the discovery tool indicates whether devices are

actually reachable via a web browser.

Fig. 3.1: rcdiscover-gui tool for finding connected GigE Vision® devices

After successful discovery, a double click on the device row opens theWeb GUI (Section 6.1) of the device
in the operating system’s default web browser. Google Chrome or Mozilla Firefox are recommended as

web browser.

3.4.1 Resetting configuration
Note: The rcdiscover-gui resetting mechanism is currently not implemented for rc_cube devices.

3.5 Network configuration
The rc_cube requires an Internet Protocol (IP) address for communication with other network devices.
The IP address must be unique in the local network, and can be set either manually via a user-

configurable persistent IP address, or automatically via DHCP. If none of these IP configuration methods
apply, the rc_cube falls back to a Link-Local IP address.
Roboception GmbH

Manual: rc_cube

14 Rev: 21.04.0

Status: Apr 15, 2021

http://www.roboception.com/download

3.5. Network configuration

The network settings of the rc_visard that is used in combination with the rc_cube are automatically
configured when the rc_visard is connected to the rc_cube.

Warning: To not conflict with the internal network between the rc_cube and the connected rc_visard,
the IP address assigned to the rc_cube in the local network must not be in the range of 172.23.42.
0/24.

Following the GigE Vision® standard, the priority of IP configuration methods on the rc_cube is
1. Persistent IP (if enabled)

2. DHCP (if enabled)

3. Link-Local

Yes

Yes

Yes
Use Persistent IP

Use DHCP

Successful?

Successful?

No

No
No

Start

End

Yes

No

Persistent IP
enabled?

DHCP enabled?

Use Link-Local
Address

Fig. 3.2: rc_cube’s IP configuration method selection flowchart

Options for changing the rc_cube’s network settings and IP configuration are:
• the System tab of the rc_cube’s Web GUI – if it is reachable in the local network already, see WebGUI (Section 6.1)
• any configuration tool compatible with GigE Vision® 2.0, or Roboception’s command-line tool
gc_config. Typically, these tools scan for all available GigE Vision® devices on the network. Allrc_cube devices can be uniquely identified by their serial number and MAC address, which are
both printed on the device.

• temporarily changing or completely resetting the rc_cube’s network configuration via Robocep-
tion’s rcdiscover-gui tool, see Discovery of rc_cube devices (Section 3.4)

Roboception GmbH

Manual: rc_cube

15 Rev: 21.04.0

Status: Apr 15, 2021

3.5. Network configuration

Note: The command-line tool gc_config is part of Roboception’s open-source convenience layer
rc_genicam_api, which can be downloaded free of charge for Windows and Linux from http://www.
roboception.com/download.

3.5.1 Host name
The rc_cube’s host name is based on its serial number, which is printed on the device, and is defined as
rc-cube-<serial number>.

3.5.2 Automatic configuration (factory default)
The Dynamic Host Configuration Protocol (DHCP) is preferred for setting an IP address. If DHCP is active
on the rc_cube, which is the factory default, the device tries to contact a DHCP server at startup and
every time the network cable is being plugged in. If a DHCP server is available on the network, the IP

address is automatically configured.

In some networks, the DHCP server is configured so that it only accepts known devices. In this case,

the Media Access Control address (MAC address), which is printed on the device label, needs to be con-
figured in the DHCP server. At the same time, the rc_cube’s host name can also be set in the Domain
Name Server (DNS). Both MAC address and host name should be sent to the network administrator for
configuration.

If the rc_cube cannot contact a DHCP server within about 15 seconds after startup, or after plugging in
the network cable, it assigns itself a unique IP address. This process is called Link-Local. This option is
especially useful for connecting the rc_cube directly to a computer. The computer must be configured
for Link-Local as well. Link-Local might already be configured as a standard fallback option, as it is

under Windows 10. Other operating systems such as Linux require Link-Local to be explicitly configured

in their network managers.

3.5.3 Manual configuration
Specifying a persistent, i.e. static IP address manually might be useful in some cases. This address is

stored on the rc_cube to be used on device startup or network reconnection. Please make sure the
selected IP address, subnet mask and gateway will not cause any conflicts on the network.

Warning: The IP address must be unique within the local network and within the local network’s
range of valid addresses. Furthermore, the subnet mask must match the local network; otherwise,

the rc_cube may become inaccessible. This can be avoided by using automatic configuration as ex-
plained in Automatic configuration (factory default) (Section 3.5.2).

If this IP address cannot be assigned, e.g. because it is already used by another device in the network,

IP configuration will fall back to automatic configuration via DHCP (if enabled) or a Link-Local address.

Roboception GmbH

Manual: rc_cube

16 Rev: 21.04.0

Status: Apr 15, 2021

http://www.roboception.com/download
http://www.roboception.com/download

4 Measurement principles
The rc_cube is a high-performance 3D-image-processing device that is used in combination with Robo-
ception’s 3D camera rc_visard. Together, they provide rectified camera, disparity, confidence, and error
images, which allow the viewed scene’s depth values along with their uncertainties to be computed.

In the following, the underlying measurement principles are explained in more detail.

4.1 Stereo vision
The rc_cube is based on stereo vision using the SGM (Semi-Global Matching) method. In stereo vision, 3D
information about a scene can be extracted by comparing two images taken from different viewpoints.

The main idea behind using a camera pair for measuring depth is the fact that object points appear

at different positions in the two camera images depending on their distance from the camera pair.

Very distant object points appear at approximately the same position in both images, whereas very

close object points occupy different positions in the left and right camera image. The object points’

displacement in the two images is called disparity. The larger the disparity, the closer the object is to the
camera. The principle is illustrated in Fig. 4.1.

Image plane

Left camera Right camera

Left image

Right image

d1 d2

Fig. 4.1: Sketch of the stereo-vision principle: The more distant object (black) exhibits a smaller disparity

𝑑2 than that of the close object (gray), 𝑑1.

Stereo vision is a form of passive sensing, meaning that it emits neither light nor other signals to mea-

sure distances, but uses only light that the environment emits or reflects. Thus, the Roboception rc_cube
products utilizing this sensing principle can work indoors and outdoors and multiple devices can work

together without interferences.

To compute the 3D information, the stereo matching algorithm must be able to find corresponding

object points in the left and right camera images. For this, the algorithm requires texture, meaning

changes in image intensity values due to patterns or the objects’ surface structure, in the images. Stereo

Roboception GmbH

Manual: rc_cube

17 Rev: 21.04.0

Status: Apr 15, 2021

4.1. Stereo vision

matching is not possible for completely untextured regions, such as a flat white wall without any visible

surface structure. The SGM stereo matching method used provides the best trade-off between runtime
and accuracy, even for fine structures.

The following software modules are required to compute 3D information:

• Stereo camera: This module is responsible for capturing synchronized stereo image pairs and
transforming them into images approaching those taken by an ideal stereo camera (rectifica-

tion) (Section 5.1.1).

• Stereo matching: This module computes disparities for the rectified stereo camera pair usingSGM (Section 5.1.2).

Roboception GmbH

Manual: rc_cube

18 Rev: 21.04.0

Status: Apr 15, 2021

5 Software modules
The rc_cube comes with several on-board software modules, each of which corresponds to a certain
functionality and can be interfaced via its respective node in the REST-API interface (Section 6.3).
The rc_cube’s software modules can be divided into

• 3D camera modules, Section 5.1 which acquire stereo image pairs and compute 3D depth in-
formation such as disparity, error, and confidence images, and are also accessible via therc_cube’s GigE Vision/GenICam interface,

• Detection modules, Section 5.2 which provide a variety of detection functionalities, such as grasp
point computation and object detection,

• Configuration modules, Section 5.3 which enable the user to configure the rc_cube for specific
applications.

5.1 3D camera modules
The rc_cube’s 3D camera software consists of the following modules:

• Stereo camera (rc_stereocamera, Section 5.1.1) acquires stereo image pairs and performs pla-
nar rectification for using the stereo camera as a measurement device. Images are provided

both for further internal processing by other modules and for external use as GenICam imagestreams.
• Stereo matching (rc_stereomatching, Section 5.1.2) uses the rectified stereo image pairs to

compute 3D depth information such as disparity, error, and confidence images. These are

provided as GenICam streams, too.

The Stereo camera and the Stereo matching modules, which acquire stereo image pairs and compute 3D
depth information such as disparity, error, and confidence images, are also accessible via the rc_cube’sGigE Vision/GenICam interface.

5.1.1 Stereo camera
The stereo camera module is a base module which is available on every rc_cube and contains functional-
ity for acquiring stereo image pairs and performing planar rectification needed to use the stereo camera

as a measurement device.

5.1.1.1 Image acquisition
Acquiring stereo image pairs is the first step toward stereo vision. Since both cameras are equipped

with global shutters and their chips are hardware-synchronized, all pixels of both camera images are

always exposed at exactly the same time. The time at the middle of the image exposure is attached to

the images as a timestamp. This timestamp becomes important for dynamic applications in which the

cameras or the scene moves.

Roboception GmbH

Manual: rc_cube

19 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

Exposure time can be set manually to a fixed value. This is useful in an environment where lighting is

controlled so that it is always at the same intensity. The camera is set to auto exposure by default. In

this mode, the exposure time is chosen automatically, up to a user defined maximum. The permitted

maximum is meant to limit the motion blur that occurs when taking images while the camera or the

scene is moving. The maximum exposure time thus depends on the application. If the maximum expo-

sure time is reached, the auto-exposure algorithm uses the gain to increase image brightness. However,

larger gain factors also amplify image noise. Thus, the maximum exposure time trades motion blur off

against image noise under weak-light conditions.

5.1.1.2 Planar rectification
Camera parameters such as focal length, lens distortion, and the relationship of the cameras to each

other must be exactly known to use the stereo camera as a measuring instrument. The rc_visard is
already calibrated at production time and normally requires no recalibration. The camera parameters

describe with great precision all of the stereo-camera system’s geometric properties, but the resulting

model is complex and difficult to use.

Rectification is the process of remapping the images according to an ideal stereo-camera model. Lens

distortion is removed and the images are aligned so that an object point is always projected onto the

same image row in both images. The cameras’ optical axes become exactly parallel. This means that

points at infinite distance are projected onto the same image column in both images. The closer an

object point is, the larger is the difference between its image columns in the right and left images. This

difference is called disparity.

Mathematically, the object point 𝑃 = (𝑃𝑥, 𝑃𝑦, 𝑃𝑧) is projected onto image point 𝑝𝑙 = (𝑝𝑙𝑥, 𝑝𝑙𝑦, 1) in the
left rectified image and onto 𝑝𝑟 = (𝑝𝑟𝑥, 𝑝𝑟𝑦, 1) in the right rectified image by

𝐴 =

⎛⎝ 𝑓 0 𝑤
2

0 𝑓 ℎ
2

0 0 1

⎞⎠ , 𝑇𝑠 =

⎛⎝ 𝑡
0
0

⎞⎠ ,

𝑠1𝑝𝑙 = 𝐴𝑃,

𝑠2𝑝𝑟 = 𝐴(𝑃 − 𝑇𝑠).

The focal length 𝑓 is the distance between the common image plane and the optical centers of the left
and right cameras. It is measured in pixels. The baseline 𝑡 is the distance between the optical centers
of the two cameras. The image width 𝑤 and height ℎ are measured in pixels, too. 𝑠1 and 𝑠2 are scale
factors ensuring that the third coordinates of the image points 𝑝𝑙 and 𝑝𝑟 are equal to 1.

Note: The rc_cube reports a focal length factor via its various interfaces. It relates to the image width
for supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtained by
multiplying the focal length factor by the image width in pixels.

5.1.1.3 Viewing and downloading images
The rc_cube provides the time-stamped, rectified left and right images over the GenICam interface (seeProvided image streams, Section 6.2.6). Live streams of the images are provided with reduced quality in
the Web GUI (Section 6.1).
TheWeb GUI (Section 6.1) also provides the opportunity to download a snapshot of the current scene as
a .tar.gz file as described in Downloading stereo camera images (Section 6.1.3).
5.1.1.4 Parameters
The stereo-camera software module is called rc_stereocamera and is represented by the Camera tab in
theWeb GUI (Section 6.1). The user can change the camera parameters there, or directly via the REST-API
(REST-API interface, Section 6.3) or GigE Vision (GigE Vision 2.0/GenICam image interface, Section 6.2).

Roboception GmbH

Manual: rc_cube

20 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

Note: Camera parameters cannot be changed via the Web GUI or REST-API if rc_cube is used via GigE
Vision.

Parameter overview
This module offers the following run-time parameters:

Table 5.1: The rc_stereocameramodule’s run-time parameters

Name Type Min Max Default Description

exp_auto bool false true true Switching between auto and

manual exposure

exp_auto_average_max float64 0.0 1.0 0.75 Maximum average intensity if

exp_auto is true

exp_auto_average_min float64 0.0 1.0 0.25 Minimum average intensity if

exp_auto is true

exp_auto_mode string - - Normal Auto-exposure mode: [Normal,

Out1High, AdaptiveOut1]

exp_height int32 0 959 0 Height of auto exposure region. 0

for whole image.

exp_max float64 6.6e-05 0.018 0.018 Maximum exposure time in

seconds if exp_auto is true

exp_offset_x int32 0 1279 0 First column of auto exposure

region

exp_offset_y int32 0 959 0 First row of auto exposure region

exp_value float64 6.6e-05 0.018 0.005 Manual exposure time in seconds

if exp_auto is false

exp_width int32 0 1279 0 Width of auto exposure region. 0

for whole image.

fps float64 1.0 25.0 25.0 Frames per second in Hertz

gain_value float64 0.0 18.0 0.0 Manual gain value in decibel if

exp_auto is false

wb_auto bool false true true Switching white balance on and

off (only for color camera)

wb_ratio_blue float64 0.125 8.0 2.4 Blue to green balance ratio if

wb_auto is false (only for color

camera)

wb_ratio_red float64 0.125 8.0 1.2 Red to green balance ratio if

wb_auto is false (only for color

camera)

Roboception GmbH

Manual: rc_cube

21 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

Description of run-time parameters

Fig. 5.1: The Web GUI’s Camera tab

Roboception GmbH

Manual: rc_cube

22 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

fps (FPS)
This value is the cameras’ frame rate (fps, frames per second), which determines the upper

frequency at which depth images can be computed. This is also the frequency at which therc_cube delivers images via GigE Vision. Reducing this frequency also reduces the network
bandwidth required to transmit the images.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/parameters?fps=<value>

exp_auto (Exposure Auto orManual)
This value can be set to true for auto-exposure mode, or to false for manual exposure mode.
In manual exposure mode, the chosen exposure time is kept, even if the images are overex-

posed or underexposed. In auto-exposure mode, the exposure time and gain factor is cho-

sen automatically to correctly expose the image. The last automatically determined expo-

sure and gain values are set into exp_value and gain_value when switching auto-exposure
off.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/parameters?exp_auto=<value>

exp_auto_mode (Auto Exposure Mode)
The auto exposure mode can be set to Normal, Out1High or AdaptiveOut1. These modes are
relevant when the rc_cube is used with an external light source or projector connected to
the rc_visard’s GPIO Out1, which can be controlled by the optional IOControl module (IO andProjector Control, Section 5.3.4).
Normal: All images are considered for exposure control, except if the IOControl mode for
GPIO Out1 is ExposureAlternateActive: then only images where GPIO Out1 is HIGH will be
considered, since these images may be brighter in case GPIO Out1 is used to trigger an

external light source.

Out1High: This exposure mode adapts the exposure time using only images with GPIO Out1
HIGH. Images where GPIO Out1 is LOW are not considered at all, which means, that the

exposure time does not change when only images with Out1 LOW are acquired. This mode

is recommended for using the acquisition_mode SingleFrameOut1 in the stereo matching
module as described in Stereo Matching Parameters (Section 5.1.2.5) and having an external
projector connected to GPIO Out1, when changes in the brightness of the scene should only

be considered when Out1 is HIGH. This is the case, for example, when a bright part of the

robot moves through the field of view of the camera just before a detection is triggered,

which should not affect the exposure time.

AdaptiveOut1: This exposure mode uses all camera images and tracks the exposure dif-
ference between images with GPIO Out1 LOW and HIGH. While the IOControl mode for

GPIO Out1 is LOW, the images are under-exposed by this exposure difference to avoid over-

exposure for when GPIO Out1 triggers an external projector. The resulting exposure dif-

ference is given as Out1 Reduction below the live images. This mode is recommended for

using the acquisition_mode SingleFrameOut1 in the stereo matching module as described
in Stereo Matching Parameters (Section 5.1.2.5) and having an external projector connected to
GPIO Out1, when changes in the brightness of the scene should be considered at all times.

This is the case, for example, in applications where the external lighting is changing.

Via the REST-API, this parameter can be set as follows.

Roboception GmbH

Manual: rc_cube

23 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

PUT http://<host>/api/v1/nodes/rc_stereocamera/parameters?exp_auto_mode=<value>

exp_max (Max Exposure)
This value is the maximal exposure time in auto-exposure mode in seconds. The actual ex-

posure time is adjusted automatically so that the images are exposed correctly. If the maxi-

mum exposure time is reached, but the images are still underexposed, the rc_cube stepwise
increases the gain to increase the images’ brightness. Limiting the exposure time is useful for

avoiding or reducing motion blur during fast movements. However, higher gain introduces

noise into the image. The best trade-off depends on the application.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/parameters?exp_max=<value>

exp_auto_average_max (Max Brightness) and exp_auto_average_min (Min Brightness)
The auto-exposure tries to set the exposure time and gain factor such that the average inten-

sity (i.e. brightness) in the image or exposure region is between amaximum and aminimum.

The maximum brightness will be used if there is no saturation, e.g. no over-exposure due to

bright surfaces or reflections. In case of saturation, the exposure time and gain factor are

reduced, but only down to the minimum brightness.

The maximum brightness has precendence over the minimum brightness parameter. If the

minimum brightness is larger than the maximum brightness, the auto-exposure always tries

to make the average intensity equal to the maximum brightness.

The current brightness is always shown in the status bar below the images.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/parameters?<exp_auto_average_max|exp_

→˓auto_average_min>=<value>

exp_offset_x, exp_offset_y, exp_width, exp_height (Exposure Region)
These values define a rectangular region in the left rectified image for limiting the area used

for computing the auto exposure. The exposure time and gain factor of both images are

chosen to optimally expose the defined region. This can lead to over- or underexposure of

image parts outside the defined region. If either the width or height is 0, then the whole left

and right images are considered by the auto exposure function. This is the default.

The region is visualized in the Web GUI by a rectangle in the left rectified image. It can be

defined using the sliders or by selecting it in the image after pressing the button Select
Region in Image.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/parameters?<exp_offset_x|exp_offset_

→˓y|exp_width|exp_height>=<value>

exp_value (Exposure)
This value is the exposure time in manual exposure mode in seconds. This exposure time is

kept constant even if the images are underexposed.

Roboception GmbH

Manual: rc_cube

24 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/parameters?exp_value=<value>

gain_value (Gain)
This value is the gain factor in decibel that can be set in manual exposure mode. Higher gain

factors reduce the required exposure time but introduce noise.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/parameters?gain_value=<value>

wb_auto (White Balance Auto orManual)
This value can be set to true for automatic white balancing or false for manually setting the
ratio between the colors using wb_ratio_red and wb_ratio_blue. The last automatically
determined ratios are set into wb_ratio_red and wb_ratio_blue when switching automatic
white balancing off. White balancing is without function for monochrome cameras and will

not be displayed in the Web GUI in this case.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/parameters?wb_auto=<value>

wb_ratio_blue and wb_ratio_red (Blue | Green and Red | Green)
These values are used to set blue to green and red to green ratios for manual white balance.

White balancing is without function for monochrome cameras and will not be displayed in

the Web GUI in this case.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/parameters?<wb_ratio_blue|wb_ratio_red>=
→˓<value>

These parameters are also available over the GenICam interface with slightly different names and partly

with different units or data types (see GigE Vision 2.0/GenICam image interface, Section 6.2).
5.1.1.5 Status values
This module reports the following status values:

Roboception GmbH

Manual: rc_cube

25 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

Table 5.2: The rc_stereocameramodule’s status values

Name Description

out1_reduction Fraction of reduction (0.0 - 1.0) of brightness for images with GPIO Out1=LOW in

exp_auto_mode=AdaptiveOut1 or exp_auto_mode=Out1High

baseline Stereo baseline 𝑡 in meters
brightness Current brightness of the image as value between 0 and 1

color 0 for monochrome cameras, 1 for color cameras

exp Actual exposure time in seconds. This value is shown below the image preview in

the Web GUI as Exposure (ms).
focal Focal length factor normalized to an image width of 1

fps Actual frame rate of the camera images in Hertz. This value is shown in the Web

GUI below the image preview as FPS (Hz).
gain Actual gain factor in decibel. This value is shown in the Web GUI below the image

preview as Gain (dB).
height Height of the camera image in pixels

temp_left Temperature of the left camera sensor in degrees Celsius

temp_right Temperature of the right camera sensor in degrees Celsius

test 0 for live images and 1 for test images

time Processing time for image grabbing in seconds

width Width of the camera image in pixels

5.1.1.6 Services
The stereo camera module offers the following services for persisting and restoring parameter settings.

save_parameters

With this service call, the stereo camera module’s current parameter settings will be made

persistent to the rc_cube. That means, these values are applied even after reboot.
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/services/save_parameters

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "save_parameters",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_stereocamera/services/reset_defaults

Roboception GmbH

Manual: rc_cube

26 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

Warning: By calling this service, the current parameter settings for the camera module
are irrecoverably lost.

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

5.1.2 Stereo matching
The stereo matching module is a base module which is available on every rc_cube and uses the rectified
stereo-image pair to compute disparity, error, and confidence images.

To compute full resolution disparity, error and confidence images, an additional StereoPlus license (Sec-
tion 7.5) is required. This license is included in every rc_cube purchased after 31.01.2019.
5.1.2.1 Computing disparity images
After rectification, an object point is guaranteed to be projected onto the same pixel row in both left

and right image. That point’s pixel column in the right image is always lower than or equal to the same

point’s pixel column in the left image. The term disparity signifies the difference between the pixel

columns in the right and left images and expresses the depth or distance of the object point from the

camera. The disparity image stores the disparity values of all pixels in the left camera image.

The larger the disparity, the closer the object point. A disparity of 0 means that the projections of the

object point are in the same image column and the object point is at infinite distance. Often, there are

pixels for which disparity cannot be determined. This is the case for occlusions that appear on the left

sides of objects, because these areas are not seen from the right camera. Furthermore, disparity cannot

be determined for textureless areas. Pixels for which the disparity cannot be determined are marked as

invalid with the special disparity value of 0. To distinguish between invalid disparity measurements and

disparity measurements of 0 for objects that are infinitely far away, the disparity value for the latter is

set to the smallest possible disparity value above 0.

To compute disparity values, the stereo matching algorithm has to find corresponding object points in

the left and right camera images. These are points that represent the same object point in the scene.

For stereo matching, the rc_cube uses SGM (Semi-Global Matching), which offers quick run times and
great accuracy, especially at object borders, fine structures, and in weakly textured areas.

A key requirement for any stereo matching method is the presence of texture in the image, i.e., image-

intensity changes due to patterns or surface structure within the scene. In completely untextured re-

gions such as a flat white wall without any structure, disparity values can either not be computed or

the results are erroneous or have low confidence (see Confidence and error images, Section 5.1.2.3). The
texture in the scene should not be an artificial, repetitive pattern, since those structures may lead to

ambiguities and hence to wrong disparity measurements.

When working with poorly textured objects or in untextured environments, a static artificial texture can

be projected onto the scene using an external pattern projector. This pattern should be random-like

and not contain repetitive structures. The rc_cube provides the IOControl module (see IO and ProjectorControl, Section 5.3.4) as optional software module which can control a pattern projector connected to
the rc_visard.
Roboception GmbH

Manual: rc_cube

27 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

5.1.2.2 Computing depth images and point clouds
The following equations show how to compute an object point’s actual 3D coordinates 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 in the

camera coordinate frame from the disparity image’s pixel coordinates 𝑝𝑥, 𝑝𝑦 and the disparity value 𝑑 in
pixels:

𝑃𝑥 =
𝑝𝑥 · 𝑡
𝑑

𝑃𝑦 =
𝑝𝑦 · 𝑡
𝑑

𝑃𝑧 =
𝑓 · 𝑡
𝑑

,

(5.1)

where 𝑓 is the focal length after rectification in pixels and 𝑡 is the stereo baseline in meters, which
was determined during calibration. These values are also transferred over the GenICam interface (seeCustom GenICam features of the rc_cube, Section 6.2.4).
Note: The rc_cube reports a focal length factor via its various interfaces. It relates to the image width
for supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtained by
multiplying the focal length factor by the image width in pixels.

Please note that equations (5.1) assume that the coordinate frame is centered in the principal point that

is typically in the center of the image, and 𝑝𝑥, 𝑝𝑦 refer to the middle of the pixel, i.e. by adding 0.5 to the
integer pixel coordinates. The following figure shows the definition of the image coordinate frame.

Fig. 5.2: The image coordinate frame’s origin is defined to be at the image center – 𝑤 is the image width
and ℎ is the image height.

The same equations, but with the corresponding GenICam parameters are given in Image stream con-versions (Section 6.2.7).
The set of all object points computed from the disparity image gives the point cloud, which can be used

for 3D modeling applications. The disparity image is converted into a depth image by replacing the

disparity value in each pixel with the value of 𝑃𝑧 .

Note: Roboception provides software and examples for receiving disparity images from the rc_cube
via GigE Vision and computing depth images and point clouds. See http://www.roboception.com/

download.

5.1.2.3 Confidence and error images
For each disparity image, additionally an error image and a confidence image are provided, which give

uncertainty measures for each disparity value. These images have the same resolution and the same

frame rate as the disparity image. The error image contains the disparity error 𝑑𝑒𝑝𝑠 in pixels correspond-
ing to the disparity value at the same image coordinates in the disparity image. The confidence image

contains the corresponding confidence value 𝑐 between 0 and 1. The confidence is defined as the prob-
ability of the true disparity value being within the interval of three times the error around the measured

disparity 𝑑, i.e., [𝑑− 3𝑑𝑒𝑝𝑠, 𝑑+ 3𝑑𝑒𝑝𝑠]. Thus, the disparity image with error and confidence values can be

Roboception GmbH

Manual: rc_cube

28 Rev: 21.04.0

Status: Apr 15, 2021

http://www.roboception.com/download
http://www.roboception.com/download

5.1. 3D camera modules

used in applications requiring probabilistic inference. The confidence and error values corresponding

to an invalid disparity measurement will be 0.

The disparity error 𝑑𝑒𝑝𝑠 (in pixels) can be converted to a depth error 𝑧𝑒𝑝𝑠 (in meters) using the focal
length 𝑓 (in pixels), the baseline 𝑡 (in meters), and the disparity value 𝑑 (in pixels) of the same pixel in the
disparity image:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑓 · 𝑡

𝑑2
. (5.2)

Combining equations (5.1) and (5.2) allows the depth error to be related to the depth:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑃𝑧

2

𝑓 · 𝑡
.

With the focal lengths and baselines of the different rc_visard models and the typical combined cali-
bration and stereo matching error 𝑑𝑒𝑝𝑠 of 0.25 pixels, the depth accuracy can be visualized as shown
below.

5.1.2.4 Viewing and downloading images and point clouds
The rc_cube provides time-stamped disparity, error, and confidence images over the GenICam interface
(see Provided image streams, Section 6.2.6). Live streams of the images are provided with reduced quality
in the Web GUI (Section 6.1).
The Web GUI (Section 6.1) also provides the opportunity to download a snapshot of the current scene
containing the depth, error and confidence images, as well as a point cloud in ply format as described

in Downloading depth images and point clouds (Section 6.1.4).
5.1.2.5 Parameters
The stereo matching module is called rc_stereomatching in the REST-API and it is represented by theDepth Image tab in the Web GUI (Section 6.1). The user can change the stereo matching parameters
there, or use the REST-API (REST-API interface, Section 6.3) or GigE Vision (GigE Vision 2.0/GenICam imageinterface, Section 6.2).
Parameter overview
This module offers the following run-time parameters:

Roboception GmbH

Manual: rc_cube

29 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

Table 5.3: The rc_stereomatchingmodule’s run-time parameters

Name Type Min Max Default Description

acquisition_mode string - - Continuous Acquisition mode: [Continuous,

SingleFrame, SingleFrameOut1]

double_shot bool false true false Combination of disparity images

from two subsequent stereo image

pairs

fill int32 0 4 3 Disparity tolerance for hole filling in

pixels

maxdepth float64 0.1 100.0 100.0 Maximum depth in meters

maxdeptherr float64 0.01 100.0 100.0 Maximum depth error in meters

minconf float64 0.5 1.0 0.5 Minimum confidence

mindepth float64 0.1 100.0 0.1 Minimum depth in meters

quality string - - High Quality: [Low, Medium, High, Full].

Full requires ‘stereo_plus’ license.

seg int32 0 4000 200 Minimum size of valid disparity

segments in pixels

smooth bool false true true Smoothing of disparity image

(requires ‘stereo_plus’ license)

static_scene bool false true false Accumulation of images in static

scenes to reduce noise

Description of run-time parameters
Each run-time parameter is represented by a row on the Web GUI’s Depth Image tab. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order

they appear in the Web GUI:

Roboception GmbH

Manual: rc_cube

30 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

Fig. 5.3: The Web GUI’s Depth Image tab

acquisition_mode (Acquisition Mode)
The acquisition mode can be set to Continuous, SingleFrame (Single) or SingleFrameOut1
(Single + Out1). The first one is the default, which performs stereo matching continuously
according to the user defined frame rate and the available computation resources. The two

Roboception GmbH

Manual: rc_cube

31 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

other modes perform stereo matching upon each click of the Acquire button. The Single +Out1 mode additionally controls an external projector that is connected to GPIO Out1 (IOand Projector Control, Section 5.3.4). In this mode, out1_mode of the IOControl module is
automatically set to ExposureAlternateActive upon each trigger call and reset to Low after
receiving images for stereo matching.

Note: The Single + Out1 mode can only change the out1_mode if the IOControl license
is available on the rc_cube.
Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?acquisition_mode=<value>

quality (Quality)
Disparity images can be computed in different resolutions: High (640 x 480), Medium (320 x
240) and Low (214 x 160). The lower the resolution, the higher the frame rate of the disparity
image. A 25 Hz frame rate can be achieved only at the lowest resolution. Please note that the

frame rate of the disparity, confidence, and error images will always be less than or equal to

the camera frame rate.

Additionally, full resolution matching (Full) with 1280 x 960 pixel is possible with a valid
StereoPlus license.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?quality=<value>

double_shot (Double-Shot)
This mode is intended for scenes recorded with a projector in Single + Out1 acquisition
mode, or in continuous acquisition mode with the projector in ExposureAlternateActive
mode. Holes caused by reflections of the projector are filled with depth information com-

puted from the images without projector pattern. It must only be enabled if the scene does

not change during the acquisition of the images.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?double_shot=<value>

static_scene (Static)
This option averages 8 consecutive camera images before matching. This reduces noise,

which improves the stereo matching result. However, the latency increases significantly.

The timestamp of the first image is taken as timestamp of the disparity image. This option

only affects matching in full or high quality. It must only be enabled if the scene does not

change during the acquisition of the 8 images.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?static_scene=<value>

Roboception GmbH

Manual: rc_cube

32 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

mindepth (Minimum Distance)
The minimum distance is the smallest distance from the camera at which measurements

should be possible. Larger values implicitly reduce the disparity range, which also reduces

the computation time. The minimum distance is given in meters.

Depending on the capabilities of the sensor, the actual minimum distance can be higher

than the user setting. The actual minimum distance will be reported in the status values.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?mindepth=<value>

maxdepth (Maximum Distance)
The maximum distance is the largest distance from the camera at which measurements

should be possible. Pixels with larger distance values are set to invalid in the disparity image.

Setting this value to its maximum permits values up to infinity. The maximum distance is

given in meters.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?maxdepth=<value>

smooth (Smoothing)
This option activates advanced smoothing of disparity values. It is only available with a valid

StereoPlus license.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?smooth=<value>

fill (Fill-in)
This option is used to fill holes in the disparity image by interpolation. The fill-in value is the

maximum allowed disparity step on the border of the hole. Larger fill-in values can decrease

the number of holes, but the interpolated values can have larger errors. At most 5% of pixels

are interpolated. Interpolation of small holes is prefered over interpolation of larger holes.

The confidence for the interpolated pixels is set to a low value of 0.5. A fill-in value of 0

switches hole filling off.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?fill=<value>

seg (Segmentation)
The segmentation parameter is used to set the minimum number of pixels that a connected

disparity region in the disparity image must fill. Isolated regions that are smaller are set to

invalid in the disparity image. The value is related to the high quality disparity image with

640 x 480 pixels resolution and does not have to be scaled when a different quality is chosen.

Segmentation is useful for removing erroneous disparities. However, larger values may also

remove real objects.

Via the REST-API, this parameter can be set as follows.

Roboception GmbH

Manual: rc_cube

33 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?seg=<value>

minconf (Minimum Confidence)
The minimum confidence can be set to filter potentially false disparity measurements. All

pixels with less confidence than the chosen value are set to invalid in the disparity image.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?minconf=<value>

maxdeptherr (Maximum Depth Error)
The maximum depth error is used to filter measurements that are too inaccurate. All pixels

with a larger depth error than the chosen value are set to invalid in the disparity image. The

maximum depth error is given in meters. The depth error generally grows quadratically with

an object’s distance from the camera (see Confidence and error images, Section 5.1.2.3).
Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?maxdeptherr=<value>

The same parameters are also available over the GenICam interface with slightly different names and

partly with different data types (see GigE Vision 2.0/GenICam image interface, Section 6.2).
5.1.2.6 Status values
This module reports the following status values:

Table 5.4: The rc_stereomatchingmodule’s status values

Name Description

fps Actual frame rate of the disparity, error, and confidence images. This value

is shown in the Web GUI below the image preview as FPS (Hz).
latency Time in seconds between image aquisition and publishing of disparity

image

mindepth Actual minimum working distance in meters

maxdepth Actual maximum working distance in meters

time_matching Time in seconds for performing stereo matching using SGM on the GPU
time_postprocessing Time in seconds for postprocessing the matching result on the CPU

Since SGM stereo matching and post processing run in parallel, the overall processing time for this

module is the maximum of time_matching and time_postprocessing.

5.1.2.7 Services
The stereo matching module offers the following services for persisting and restoring parameter set-

tings.

acquisition_trigger

This call signals the module to perform stereo matching of the next available images, if the

parameter acquisition_mode is set to SingleFrame or SingleFrameOut1. An error is re-
turned if the acquisition_mode is set to Continuous.

Roboception GmbH

Manual: rc_cube

34 Rev: 21.04.0

Status: Apr 15, 2021

5.1. 3D camera modules

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/acquisition_trigger

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Possible return codes are shown below.

Table 5.5: Possible return codes of the acquisition_trigger ser-
vice call.

Code Description

0 Success

-8 Triggering is only possible in SingleFrame acquisition mode

101 Trigger is ignored, because there is a trigger call pending

102 Trigger is ignored, because there are no subscribers

save_parameters

With this service call, the stereo matching module’s current parameter settings are persisted

to the rc_cube. That means, these values are applied even after reboot.
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/save_parameters

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "save_parameters",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/reset_defaults

Roboception GmbH

Manual: rc_cube

35 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Warning: By calling this service, the current parameter settings for the stereo matching
module are irrecoverably lost.

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

5.2 Detection modules
The rc_cube offers software modules for different detection applications:

• LoadCarrier (rc_load_carrier, Section 5.2.1) allows setting and retrieving load carriers, as well
as detecting load carriers and their filling levels.

• TagDetect (rc_april_tag_detect and rc_qr_code_detect, Section 5.2.2) allows the detection
of AprilTags and QR codes, as well as the estimation of their poses.

• ItemPick and BoxPick (rc_itempick and rc_boxpick, Section 5.2.3) provides an out-of-the-box
perception solution for robotic pick-and-place applications of unknown objects or boxes.

• SilhouetteMatch (rc_silhouettematch, Section 5.2.4) provides an object detection solution for
objects placed on a plane.

• CADMatch (rc_cadmatch, Section 5.2.5) provides an object detection solution for 3D objects.
These modules are optional and can be activated by purchasing a separate license (Section 7.5).

5.2.1 LoadCarrier
5.2.1.1 Introduction
The LoadCarrier module is an optional on-board module of the rc_cube and is licensed with any of the
modules ItemPick, BoxPick, SilhouetteMatch or CADMatch. Otherwise it requires a separate LoadCarrierlicense (Section 7.5) to be purchased.
The load carrier functionality is provided by the LoadCarrier module itself, but also by the ItemPick andBoxPick (Section 5.2.3), SilhouetteMatch (Section 5.2.4) and CADMatch (Section 5.2.5) modules.
5.2.1.2 Load carrier
A load carrier (bin) is a container with four walls, a floor and a rectangular rim, which can contain objects.

It can be used to limit the volume in which to search for objects or grasp points.

A load carrier is defined by its outer_dimensions and inner_dimensions. The maximum

outer_dimensions are 2.0 meters in every dimension.

The origin of the load carrier reference frame is in the center of the load carrier outer box and its z axis
is perpendicular to the load carrier floor pointing outwards (see Fig. 5.4).

Roboception GmbH

Manual: rc_cube

36 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

x
yz

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

Fig. 5.4: Load carrier with reference frame and inner and outer dimensions

Note: Typically, outer and inner dimensions of a load carrier are available in the specifications of the
load carrier manufacturer.

The inner volume of the load carrier is defined by its inner dimensions, but includes a region of 10

cm height above the load carrier, so that also items protruding from the load carrier are considered

for detection or grasp computation. Furthermore, an additional crop_distance is subtracted from the
inner volume in every dimension, which acts as a safety margin and can be configured as run-time

parameter (see Parameters, Section 5.2.1.7)). Fig. 5.5 visualizes the inner volume of a load carrier. Only
points which are inside this volume are considered for detections.

0.1 m

crop_distance

Fig. 5.5: Visualization of the inner volume of a load carrier. Only points which are inside this volume are

considered for detections.

The rc_cube can persistently store up to 50 different load carrier models, each one identified by a differ-
ent id. The configuration of a load carrier model is normally performed offline, during the set up the
desired application. This can be done via the REST-API interface (Section 6.3) or in the rc_cubeWeb GUI.
Note: The configured load carrier models are persistent even over firmware updates and rollbacks.

Roboception GmbH

Manual: rc_cube

37 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

5.2.1.3 Load carrier compartments
Some detection modules can make use of a load_carrier_compartment to further limit the volume for
the detection, for example ItemPick’s compute_grasps service (see 5.2.3.7). A load carrier compartment
is a box whose pose is defined as the transformation from the load carrier reference frame to the
compartment reference frame, which is located in the center of the compartment box (see Fig. 5.6).

x
yz

co
mp

art
me

nt
.bo

x.y

compartment.box.x
com

partm
ent.box.z

Fig. 5.6: Sample compartment inside a load carrier. The coordinate frame shown in the image is the

reference frame of the compartment.

The compartment volume is intersected with the load carrier inner volume to compute the volume for

the detection. If this intersection should also contain the 10 cm region above the load carrier, the height

of the compartment box must be increased accordingly.

5.2.1.4 Detection of load carriers
The load carrier detection algorithm is based on the detection of the load carrier’s rectangular rim.

By default, the rectangular rim_thickness is computed from the outer and inner dimensions. As an
alternative, its value can also be explicitly specified by the user.

The detection algorithm returns the pose of the load carrier’s origin (see Load carrier, Section 5.2.1.2) in
the desired pose frame.

The detection functionality also determines if the detected load carrier is overfilled, which means,
that objects protrude from the plane defined by the load carrier rim.

Roboception GmbH

Manual: rc_cube

38 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

x
z

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

y
z

rim
_th

ick
ne
ss
.y

rim_thickness.x

x
y

Fig. 5.7: Load carrier models and reference frames

The user can optionally specify a prior for the load carrier pose. The detected load carrier pose is
guaranteed to have the minimum rotation with respect to the load carrier prior pose. If no prior is

specified, the algorithm searches for a load carrier whose floor is perpendicular to the estimated gravity

vector.

5.2.1.5 Detection of filling level
The LoadCarrier module offers the detect_filling_level service to compute the filling level of a de-
tected load carrier.

The load carrier is subdivided in a configurable number of cells in a 2D grid. The maximum number of

cells is 10x10. For each cell, the following values are reported:

• level_in_percent: minimum,maximum andmean cell filling level in percent from the load carrier
floor. These values can be larger than 100% if the cell is overfilled.

• level_free_in_meters: minimum, maximum and mean cell free level in meters from the load
carrier rim. These values can be negative if the cell is overfilled.

• cell_size: dimensions of the 2D cell in meters.

• cell_position: position of the cell center in meters (either in camera or external frame, seeHand-eye calibration, Section 5.2.1.6). The z-coordinate is on the level of the load carrier rim.
• coverage: represents the proportion of valid pixels in this cell. It varies between 0 and 1 with steps
of 0.1. A low coverage indicates that the cell contains several missing data (i.e. only a few points

were actually measured in this cell).

These values are also calculated for the whole load carrier itself. If no cell subdivision is specified, only

the overall filling level is computed.

Roboception GmbH

Manual: rc_cube

39 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Fig. 5.8: Visualizations of the load carrier filling level: overall filling level without grid (left), 4x3 grid

(center), 8x8 grid (right). The load carrier content is shown in a green gradient from white (on the load

carrier floor) to dark green. The overfilled regions are visualized in red. Numbers indicate cell IDs.

5.2.1.6 Interaction with other modules
Internally, the LoadCarrier module depends on, and interacts with other on-board modules as listed

below.

Note: All changes and configuration updates to these modules will affect the performance of the
LoadCarrier module.

Stereo camera and Stereo matching
The LoadCarrier module makes internally use of the following data:

• Rectified images from the Stereo cameramodule (rc_stereocamera, Section 5.1.1);
• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,
Section 5.1.2).

All processed images are guaranteed to be captured after the module trigger time.

Estimation of gravity vector
For each load carrier detection, the module estimates the gravity vector by subscribing to the rc_visard’s
IMU data stream.

Note: The gravity vector is estimated from linear acceleration readings from the on-board IMU. For
this reason, the LoadCarrier module requires the rc_visard to remain still while the gravity vector is
being estimated.

IO and Projector Control
In case the rc_cube is used in conjunction with an external random dot projector and the IO and ProjectorControl module (rc_iocontrol, Section 5.3.4), it is recommended to connect the projector to GPIO Out
1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matching pa-rameters, Section 5.1.2.5), so that on each image acquisition trigger an image with and without projector
pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 5.3.4.1).
In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images (see Stereo camera parameters, Section 5.1.1.4).

Roboception GmbH

Manual: rc_cube

40 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

No additional changes are required to use the LoadCarrier module in combination with a random dot

projector.

Hand-eye calibration
In case the camera has been calibrated to a robot, the loadcarrier module can automatically provide

poses in the robot coordinate frame. For the loadcarrier nodes’ Services (Section 5.2.1.8), the frame of
the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no
prior knowledge about the pose of the camera in the environment is required. This means that

the configured load carriers move with the camera. It is the user’s responsibility to update the

configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-

board Hand-eye calibration module (Section 5.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is

needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.
All pose_frame values that are not camera or external are rejected.

5.2.1.7 Parameters
The LoadCarrier module is called rc_load_carrier in the REST-API and is used internally by several
other modules. The user can explore and configure the LoadCarrier module’s run-time parameter, e.g.

for development and testing, using the LoadCarrier page under the Modules tab in the Web GUI (Section
6.1), or the REST-API interface (Section 6.3).
Parameter overview
This module offers the following run-time parameters:

Table 5.6: The rc_load_carriermodule’s run-time parameters

Name Type Min Max Default Description

crop_distance float64 0.0 0.05 0.005 Safety margin in meters by which

the load carrier inner dimensions

are reduced to define the region of

interest for detection

model_tolerance float64 0.003 0.025 0.008 Indicates how much the estimated

load carrier dimensions are allowed

to differ from the load carrier model

dimensions in meters

Description of run-time parameters
Each run-time parameter is represented by a row on the LoadCarrier Settings section of the Web GUI’sLoadCarrier page. The name in the Web GUI is given in brackets behind the parameter name and
the parameters are listed in the order they appear in the Web GUI. The parameters are prefixed with

Roboception GmbH

Manual: rc_cube

41 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

load_carrier_ when they are used outside the rc_load_carriermodule from another detection mod-
ule using the REST-API interface (Section 6.3).
model_tolerance (Model Tolerance)

indicates how much the estimated load carrier dimensions are allowed to differ from the

load carrier model dimensions in meters.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?model_tolerance=<value>

crop_distance (Crop Distance)
sets the safety margin in meters by which the load carrier’s inner dimensions are reduced to

define the region of interest for detection (ref. Fig. 5.5).

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?crop_distance=<value>

5.2.1.8 Services
The user can explore and call the LoadCarrier module’s services, e.g. for development and testing, using

the REST-API interface (Section 6.3) or the rc_cube Web GUI (Section 6.1) on the LoadCarrier page under theModules tab.
Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Table 5.7: Return codes of the LoadCarrier module’s services

Code Description

0 Success

-1 An invalid argument was provided

-4 Data acquisition took longer than the maximum allowed time of 5.0 seconds

-10 New element could not be added as the maximum storage capacity of load carriers has

been exceeded

-302 More than one load carrier provided to the detect_load_carriers or
detect_filling_level services, but only one is supported

10 The maximum storage capacity of load carriers has been reached

11 An existent persistent model was overwritten by the call to set_load_carrier

100 The requested load carriers were not detected in the scene

102 The detected load carrier is empty

300 A valid robot_pose was provided as argument but it is not required

All software modules providing the load carrier functionality offer the following services.

set_region_of_interest

see set_region_of_interest (Section 5.3.2.4).

Roboception GmbH

Manual: rc_cube

42 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest

get_regions_of_interest

see get_regions_of_interest (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_regions_of_interest

delete_regions_of_interest

see delete_regions_of_interest (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest

set_region_of_interest_2d

see set_region_of_interest_2d (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest_2d

get_regions_of_interest_2d

see get_regions_of_interest_2d (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_regions_of_interest_2d

delete_regions_of_interest_2d

see delete_regions_of_interest_2d (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest_2d

set_load_carrier

Persistently stores a load carrier on the rc_cube. All configured load carriers are persistent
over firmware updates and rollbacks.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_load_carrier

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

43 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

{
"args": {

"load_carrier": {
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

}
}

Details for the definition of the load_carrier type are given in Detection of load carri-ers (Section 5.2.1.4).
The definition for the response with corresponding datatypes is:

{
"name": "set_load_carrier",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_load_carriers

Returns the configured load carriers with the requested load_carrier_ids. If no

load_carrier_ids are provided, all configured load carriers are returned.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_load_carriers

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

44 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

{
"args": {

"load_carrier_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "get_load_carriers",
"response": {
"load_carriers": [
{

"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {
"x": "float64",
"y": "float64"

}
}

],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_load_carriers

Deletes the configured load carriers with the requested load_carrier_ids. All load carriers
to be deleted must be explicitly stated in load_carrier_ids.

This service can be called as follows.

Roboception GmbH

Manual: rc_cube

45 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_load_carriers

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"load_carrier_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "delete_load_carriers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

detect_load_carriers

Triggers a load carrier detection as described in Detection of load carriers (Section 5.2.1.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_load_carriers

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"load_carrier_ids": [
"string"

],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Required arguments:

Roboception GmbH

Manual: rc_cube

46 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

pose_frame: see Hand-eye calibration (Section 5.2.1.6).
load_carrier_ids: IDs of the load carriers which should be detected.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 5.2.1.6).
Optional arguments:

region_of_interest_id: ID of the 3D region of interest where to search
for the load carriers.

region_of_interest_2d_id: ID of the 2D region of interest where to

search for the load carriers.

Warning: Only one type of region of interest can be set.
Response:

The definition for the response with corresponding datatypes is:

{
"name": "detect_load_carriers",
"response": {
"load_carriers": [
{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"return_code": {
"message": "string",
"value": "int16"

},

(continues on next page)

Roboception GmbH

Manual: rc_cube

47 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

detect_filling_level

Triggers a load carrier filling level detection as described in Detection of filling level (Section
5.2.1.5).

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_filling_level

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"filling_level_cell_count": {

"x": "uint32",
"y": "uint32"

},
"load_carrier_ids": [
"string"

],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Required arguments:

pose_frame: see Hand-eye calibration (Section 5.2.1.6).
load_carrier_ids: IDs of the load carriers which should be detected.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 5.2.1.6).

Roboception GmbH

Manual: rc_cube

48 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Optional arguments:

filling_level_cell_count: Number of cells in the filling level grid.

region_of_interest_id: ID of the 3D region of interest where to search
for the load carriers.

region_of_interest_2d_id: ID of the 2D region of interest where to

search for the load carriers.

Warning: Only one type of region of interest can be set.
Response:

The definition for the response with corresponding datatypes is:

{
"name": "detect_filling_level",
"response": {
"load_carriers": [
{

"cells_filling_levels": [
{
"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {
"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
}

],
"filling_level_cell_count": {

"x": "uint32",
"y": "uint32"

},
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overall_filling_level": {
"cell_position": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

49 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {

"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

load_carriers: list of detected load carriers and their filling levels.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

Roboception GmbH

Manual: rc_cube

50 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

5.2.2 TagDetect
5.2.2.1 Introduction
The TagDetect modules are optional on-board modules of the rc_cube and require separate licenses
(Section 7.5) to be purchased. The licenses are included in every rc_cube purchased after 01.07.2020.
The TagDetect modules run on board the rc_cube and allow the detection of 2D bar codes and tags.
Currently, there are TagDetect modules for QR codes and AprilTags. The modules, furthermore, com-
pute the position and orientation of each tag in the 3D camera coordinate system, making it simple to

manipulate a tag with a robot or to localize the camera with respect to a tag.

Tag detection is made up of three steps:

1. Tag reading on the 2D image pair (see Tag reading, Section 5.2.2.2).
2. Estimation of the pose of each tag (see Pose estimation, Section 5.2.2.3).
3. Re-identification of previously seen tags (see Tag re-identification, Section 5.2.2.4).

In the following, the two supported tag types are described, followed by a comparison.

QR code

Fig. 5.9: Sample QR code

QR codes are two-dimensional bar codes that contain arbitrary user-defined data. There is wide support

for decoding of QR codes on commodity hardware such as smartphones. Also, many online and offline

tools are available for the generation of such codes.

The “pixels” of a QR code are called modules. Appearance and resolution of QR codes change with the
amount of data they contain. While the special patterns in the three corners are always 7 modules

wide, the number of modules between them increases the more data is stored. The lowest-resolution

QR code is of size 21x21 modules and can contain up to 152 bits.

Even though many QR code generation tools support generation of specially designed QR codes (e.g.,

containing a logo, having round corners, or having dots as modules), a reliable detection of these tags

by the rc_cube’s TagDetect module is not guaranteed. The same holds for QR codes which contain
characters that are not part of regular ASCII.

Roboception GmbH

Manual: rc_cube

51 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

AprilTag

Fig. 5.10: A 16h5 tag (left) and a 36h11 tag (right). AprilTags consist of a mandatory white (a) and black

(b) border and a variable amount of data bits (c).

AprilTags are similar to QR codes. However, they are specifically designed for robust identification at

large distances. As for QR codes, we will call the tag pixels modules. Fig. 5.10 shows how AprilTags are
structured. They are surrounded by a mandatory white and black border, each one module wide. In

the center, they carry a variable amount of data modules. Other than QR codes, they do not contain

any user-defined information but are identified by a predefined family and ID. The tags in Fig. 5.10 for
example are of family 16h5 and 36h11 and have id 0 and 11, respectively. All supported families are

shown in Table 5.8.

Table 5.8: AprilTag families

Family Number of tag IDs Recommended

16h5 30 -

25h7 242 -

25h9 35 o

36h10 2320 o

36h11 587 +

For each family, the number before the “h” states the number of data modules contained in the tag:

While a 16h5 tag contains 16 (4x4) data modules ((c) in Fig. 5.10), a 36h11 tag contains 36 (6x6) modules.

The number behind the “h” refers to the Hamming distance between two tags of the same family. The

higher, the more robust is the detection, but the fewer individual tag IDs are available for the same

number of data modules (see Table 5.8).

The advantage of fewer data modules (as for 16h5 compared to 36h11) is the lower resolution of the

tag. Hence, each tag module is larger and the tag therefore can be detected from a larger distance. This,

however, comes at a price: Firstly, fewer data modules lead to fewer individual tag IDs. Secondly, and

more importantly, detection robustness is significantly reduced due to a higher false positive rate; i.e,

tags are mixed up or nonexistent tags are detected in random image texture or noise.

For these reasons we recommend using the 36h11 family and highly discourage the use of the 16h5 and

25h7 families. The latter families should only be used if a large detection distance really is necessary for

an application. However, the maximum detection distance increases only by approximately 25% when

using a 16h5 tag instead of a 36h11 tag.

Pre-generated AprilTags can be downloaded at the AprilTag project website (https://april.eecs.umich.

edu/software/apriltag.html). There, each family consists of multiple PNGs containing single tags and

one PDF containing each tag on a separate page. Each pixel in the PNGs corresponds to one AprilTag

module. When printing the tags, special care must be taken to also include the white border around

Roboception GmbH

Manual: rc_cube

52 Rev: 21.04.0

Status: Apr 15, 2021

https://april.eecs.umich.edu/software/apriltag.html
https://april.eecs.umich.edu/software/apriltag.html

5.2. Detection modules

the tag that is contained in the PNGs as well as PDFs (see (a) in Fig. 5.10). Moreover, the tags should be

scaled to the desired printing size without any interpolation, so that the sharp edges are preserved.

Comparison
Both QR codes and AprilTags have their up and down sides. While QR codes allow arbitrary user-defined

data to be stored, AprilTags have a pre-defined and limited set of tags. On the other hand, AprilTags

have a lower resolution and can therefore be detected at larger distances. Moreover, the continuous

white to black edge around AprilTags allow for more precise pose estimation.

Note: If user-defined data is not required, AprilTags should be preferred over QR codes.

5.2.2.2 Tag reading
The first step in the tag detection pipeline is reading the tags on the 2D image pair. This step takes most

of the processing time and its precision is crucial for the precision of the resulting tag pose. To control

the speed of this step, the quality parameter can be set by the user. It results in a downscaling of the
image pair before reading the tags. High yields the largest maximum detection distance and highest
precision, but also the highest processing time. Low results in the smallest maximum detection distance
and lowest precision, but processing requires less than half of the time. Medium lies in between. Please
note that this quality parameter has no relation to the quality parameter of Stereo matching (Section
5.1.2).

Fig. 5.11: Visualization of module size 𝑠, size of a tag in modules 𝑟, and size of a tag in meters 𝑡 for
AprilTags (left) and QR codes (right)

Themaximumdetection distance 𝑧 at quality High can be approximated by using the following formulae,

𝑧 =
𝑓𝑠

𝑝
,

𝑠 =
𝑡

𝑟
,

where 𝑓 is the focal length (Section 5.1.1.2) in pixels and 𝑠 is the size of a module in meters. 𝑠 can easily
be calculated by the latter formula, where 𝑡 is the size of the tag in meters and 𝑟 is the width of the code
in modules (for AprilTags without the white border). Fig. 5.11 visualizes these variables. 𝑝 denotes the
number of image pixels per module required for detection. It is different for QR codes and AprilTags.

Moreover, it varies with the tag’s angle to the camera and illumination. Approximate values for robust

detection are:

Roboception GmbH

Manual: rc_cube

53 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

• AprilTag: 𝑝 = 5 pixels/module

• QR code: 𝑝 = 6 pixels/module

The following tables give sample maximum distances for different situations, assuming a focal length of

1075 pixels and the parameter quality to be set to High.

Table 5.9: Maximum detection distance examples for AprilTags

with a width of 𝑡 = 4 cm

AprilTag family Tag width Maximum distance

36h11 (recommended) 8 modules 1.1 m

16h5 6 modules 1.4 m

Table 5.10: Maximum detection distance examples for QR codes

with a width of 𝑡 = 8 cm

Tag width Maximum distance

29 modules 0.49 m

21 modules 0.70 m

5.2.2.3 Pose estimation
For each detected tag, the pose of this tag in the camera coordinate frame is estimated. A requirement

for pose estimation is that a tag is fully visible in the left and right camera image. The coordinate frame

of the tag is aligned as shown below.

Fig. 5.12: Coordinate frames of AprilTags (left) and QR codes (right)

The z-axis is pointing “into” the tag. Please note that for AprilTags, although having the white border

included in their definition, the coordinate system’s origin is placed exactly at the transition from the

white to the black border. Since AprilTags do not have an obvious orientation, the origin is defined as

the upper left corner in the orientation they are pre-generated in.

During pose estimation, the tag’s size is also estimated, while assuming the tag to be square. For QR

codes, the size covers the full tag. For AprilTags, the size covers only the black part of the tag, hence

ignoring the outermost white border.

The user can also specify the approximate size (±10%) of tags with a specific ID. All tags not matching
this size contraint are automatically filtered out. This information is further used to resolve ambiguities

in pose estimation that may arise if multiple tags with the same ID are visible in the left and right image

and these tags are aligned in parallel to the image rows.

Roboception GmbH

Manual: rc_cube

54 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Note: For best pose estimation results one shouldmake sure to accurately print the tag and to attach
it to a rigid and as planar as possible surface. Any distortion of the tag or bump in the surface will

degrade the estimated pose.

Warning: It is highly recommended to set the approximate size of a tag. Otherwise, if multiple

tags with the same ID are visible in the left or right image, pose estimation may compute a wrong

pose if these tags have the same orientation and are approximately aligned in parallel to the image

rows. However, even if the approximate size is not given, the TagDetect modules try to detect such

situations and filter out affected tags.

Below tables give approximate precisions of the estimated poses of AprilTags and QR codes. We distin-

guish between lateral precision (i.e., in x and y direction) and precision in z direction. It is assumed that

quality is set to High and that the camera’s viewing direction is roughly parallel to the tag’s normal. The
size of a tag does not have a significant effect on the lateral or z precision; however, in general, larger

tags improve precision. With respect to precision of the orientation especially around the x and y axes,

larger tags clearly outperform smaller ones.

Table 5.11: Approximate pose precision for AprilTags

Distance rc_visard 65 - lateral rc_visard 65 - z rc_visard 160 - lateral rc_visard 160 - z
0.3 m 0.4 mm 0.9 mm 0.4 mm 0.8 mm

1.0 m 0.7 mm 3.3 mm 0.7 mm 3.3 mm

Table 5.12: Approximate pose precision for QR codes

Distance rc_visard 65 - lateral rc_visard 65 - z rc_visard 160 - lateral rc_visard 160 - z
0.3 m 0.6 mm 2.0 mm 0.6 mm 1.3 mm

1.0 m 2.6 mm 15 mm 2.6 mm 7.9 mm

5.2.2.4 Tag re-identification
Each tag has an ID; for AprilTags it is the family plus tag ID, for QR codes it is the contained data. However,
these IDs are not unique, since the same tag may appear multiple times in a scene.

For distinction of these tags, the TagDetect modules also assign each detected tag a unique identifier.

To help the user identifying an identical tag over multiple detections, tag detection tries to re-identify

tags; if successful, a tag is assigned the same unique identifier again.

Tag re-identification compares the positions of the corners of the tags in the camera coordinate frame

to find identical tags. Tags are assumed identical if they did not or only slightly move in that frame.

By setting the max_corner_distance threshold, the user can specify how much a tag is allowed move in
the static coordinate frame between two detections to be considered identical. This parameter defines

the maximum distance between the corners of two tags, which is shown in Fig. 5.13. The Euclidean

distances of all four corresponding tag corners are computed in 3D. If none of these distances exceeds

the threshold, the tags are considered identical.

Roboception GmbH

Manual: rc_cube

55 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Fig. 5.13: Simplified visualization of tag re-identification. Euclidean distances between associated tag

corners in 3D are compared (red arrows).

After a number of tag detection runs, previously detected tag instances will be discarded if they are not

detected in the meantime. This can be configured by the parameter forget_after_n_detections.

5.2.2.5 Hand-eye calibration
In case the rc_visard has been calibrated to a robot, the TagDetect module can automatically provide
poses in the robot coordinate frame. For the TagDetect node’s Services (Section 5.2.2.8), the frame of
the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the module are in the camera frame.
2. External frame (external). All poses provided by the module are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-

board Hand-eye calibration module (Section 5.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the sensor mounting is static, no further informa-

tion is needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to
and from the external frame.

All pose_frame values that are not camera or external are rejected.

5.2.2.6 Parameters
There are two separate modules available for tag detection, one for detecting AprilTags and one for

QR codes, named rc_april_tag_detect and rc_qr_code_detect, respectively. Apart from the module
names they share the same interface definition.

In addition to the REST-API interface (Section 6.3), the TagDetect modules provide tabs on the Web GUI,
on which they can be tried out and configured manually.

In the following, the parameters are listed based on the example of rc_qr_code_detect. They are the
same for rc_april_tag_detect.

This module offers the following run-time parameters:

Roboception GmbH

Manual: rc_cube

56 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Table 5.13: The rc_qr_code_detect module’s run-time parame-
ters

Name Type Min Max Default Description

detect_inverted_tags bool false true false Detect tags with black

and white exchanged

forget_after_n_detections int32 1 1000 30 Number of detection

runs after which to

forget about a previous

tag during tag

re-identification

max_corner_distance float64 0.001 0.01 0.005 Maximum distance of

corresponding tag

corners in meters during

tag re-identification

quality string - - High Quality of tag detection:

[Low, Medium, High]

use_cached_images bool false true false Use most recently

received image pair

instead of waiting for a

new pair

Via the REST-API, these parameters can be set as follows.

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/parameters?<parameter-name>
→˓=<value>

5.2.2.7 Status values
These TagDetect modules reports the following status values:

Table 5.14: The rc_qr_code_detect and rc_april_tag_detect
module’s status values

Name Description

data_acquisition_time Time in seconds required to acquire image pair

last_timestamp_processed The timestamp of the last processed image pair

state The current state of the node

tag_detection_time Processing time of the last tag detection in seconds

The reported state can take one of the following values.

Table 5.15: Possible states of the TagDetect modules

State name Description

IDLE The module is idle.

RUNNING The module is running and ready for tag detection.

FATAL A fatal error has occurred.

5.2.2.8 Services
The TagDetect modules implement a state machine for starting and stopping. The actual tag detection

can be triggered via detect.

Roboception GmbH

Manual: rc_cube

57 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

start

starts the module by transitioning from IDLE to RUNNING.

When running, the module receives images from the stereo camera and is ready to perform

tag detections. To save computing resources, the module should only be running when

necessary.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/start

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

stops the module by transitioning to IDLE.

This transition can be performed from state RUNNING and FATAL. All tag re-identification in-
formation is cleared during stopping.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/stop

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

restart

restarts the module. If in RUNNING or FATAL, the module will be stopped and then started. If
in IDLE, the module will be started.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/restart

This service has no arguments.

The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

58 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

{
"name": "restart",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

detect

triggers a tag detection. Depending on the use_cached_images parameter, the module will
use the latest received image pair (if set to true) or wait for a new pair that is captured

after the service call was triggered (if set to false, this is the default). Even if set to true, tag

detection will never use one image pair twice.

It is recommended to call detect in state RUNNING only. It is also possible to be called in state
IDLE, resulting in an auto-start and stop of the module. This, however, has some drawbacks:
First, the call will take considerably longer; second, tag re-identification will not work. It is

therefore highly recommended to manually start the module before calling detect.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/detect

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"pose_frame": "string",
"robot_pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tags": [
{
"id": "string",
"size": "float64"

}
]

}
}

Optional arguments:

tags is the list of tag IDs that the TagDetect module should detect. For QR
codes, the ID is the contained data. For AprilTags, it is “<family>_<id>”, so,
e.g., for a tag of family 36h11 and ID 5, it is “36h11_5”. Naturally, the April-
Tag module can only be triggered for AprilTags, and the QR code module

only for QR codes.

Roboception GmbH

Manual: rc_cube

59 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

The tags list can also be left empty. In that case, all detected tags will
be returned. This feature should be used only during development and

debugging of an application. Whenever possible, the concrete tag IDs

should be listed, on the one hand avoiding some false positives, on the

other hand speeding up tag detection by filtering tags not of interest.

For AprilTags, the user can not only specify concrete tags but also a com-

plete family by setting the ID to “<family>”, so, e.g., “36h11”. All tags of

this family will then be detected. It is further possible to specify multiple

complete tag families or a combination of concrete tags and complete tag

families; for instance, triggering for “36h11”, “25h9_3”, and “36h10” at the

same time.

In addition to the ID, the approximate size (±10%) of a tag can be set
with the size parameter. As described in Pose estimation, Section 5.2.2.3,
this information helps to resolve ambiguities in pose estimation that may

arise in certain situations.

pose_frame controls whether the poses of the detected tags are returned
in the camera or external frame, as detailed in Hand-eye calibration, Sec-
tion 5.2.2.5. The default is camera.

Response:
The definition for the response with corresponding datatypes is:

{
"name": "detect",
"response": {
"return_code": {
"message": "string",
"value": "int16"

},
"tags": [

{
"id": "string",
"instance_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"size": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

],
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

(continues on next page)

Roboception GmbH

Manual: rc_cube

60 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

}

timestamp is set to the timestamp of the image pair the tag detection ran on.

tags contains all detected tags.

id is the ID of the tag, similar to id in the request.

instance_id is the random unique identifier of the tag assigned by tag re-

identification.

pose contains position and orientation. The orientation is in quaternion format.

pose_frame is set to the coordinate frame above pose refers to. It will either be
“camera” or “external”.

size will be set to the estimated tag size in meters; for AprilTags, the white border
is not included.

return_code holds possible warnings or error codes in value, which are repre-
sented by a value greater than or less than 0, respectively. The respective error

message can be found in message. The following table contains a list of common
codes:

Code Description

0 Success

-1 An invalid argument was provided

-4 A timeout occurred while waiting for the image pair

-9 The license is not valid

-101 Internal error during tag detection

-102 There was a backwards jump of system time

-103 Internal error during tag pose estimation

-200 A fatal internal error occurred

200 Multiple warnings occurred; see list in message

201 The module was not in state RUNNING

Tagsmight be omitted from the detect response due to several reasons, e.g., if a tag is visible
in only one of the cameras or if pose estimation did not succeed. These filtered-out tags are

noted in the log, which can be accessed as described in Downloading log files (Section 7.6).
A visualization of the latest detection is shown on the Web GUI tabs of the TagDetect mod-

ules. Please note that this visualization will only be shown after calling the detection service

at least once. On the Web GUI, one can also manually try the detection by clicking the Detect
button.

Due to changes in system time on the rc_cube there might occur jumps of timestamps, for-
ward as well as backward (see Time synchronization, Section 6.6). Forward jumps do not have
an effect on the TagDetect module. Backward jumps, however, invalidate already received

images. Therefore, in case a backwards time jump is detected, an error of value -102 will be

issued on the next detect call, also to inform the user that the timestamps included in the
response will jump back.

save_parameters

With this service call, the TagDetect module’s current parameter settings are persisted to therc_cube. That is, these values are applied even after reboot.
This service can be called as follows.

Roboception GmbH

Manual: rc_cube

61 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/save_

→˓parameters

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "save_parameters",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”) as

given in the table above.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/reset_

→˓defaults

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

5.2.3 ItemPick and BoxPick
5.2.3.1 Introduction
The ItemPick and BoxPick modules are optional on-board modules of the rc_cube and require separate
ItemPick or BoxPick licenses (Section 7.5) to be purchased.
The modules provide out-of-the-box perception solutions for robotic pick-and-place applications. Item-

Pick targets the detection of flat surfaces of unknown objects for picking with a suction gripper. BoxPick

detects rectangular surfaces and determines their position, orientation and size for grasping. The inter-

face of both modules is very similar. Therefore both modules are described together in this chapter.

In addition, both modules offer:

• A dedicated page on the rc_cube Web GUI (Section 6.1) for easy setup, configuration, testing, and
application tuning.

• The definition of regions of interest to select relevant volumes in the scene (see Region of interest,
Section 5.3.2).

Roboception GmbH

Manual: rc_cube

62 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

• A load carrier detection functionality for bin-picking applications (see LoadCarrier, Section 5.2.1),
to provide grasps for items inside a bin only.

• The definition of compartments inside a load carrier to provide grasps for specific volumes of the

bin only.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-tion (Section 5.3.1) module, to provide grasps in the user-configured external reference frame.
• A quality value associated to each suggested grasp and related to the flatness of the grasping

surface.

• Sorting of grasps according to gravity and size so that items on top of a pile are grasped first.

Note: In this chapter, cluster and surface are used as synonyms and identify a set of points (or pixels)
with defined geometrical properties.

5.2.3.2 Detection of items (BoxPick)
The BoxPick module supports the detection of multiple item_models of type RECTANGLE. Each item
model is defined by its minimum and maximum size, with the minimum dimensions strictly smaller

than the maximum dimensions. The dimensions should be given fairly accurately to avoid misdetec-

tions, while still considering a certain tolerance to account for possible production variations and mea-

surement inaccuracies.

Optionally, further information can be given to the BoxPick module:

• The ID of the load carrier which contains the items to be detected.

• A compartment inside the load carrier where to detect items.

• The ID of the region of interest where to search for the load carriers if a load carrier is set. Other-

wise, the ID of the region of interest where to search for the items.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate

frame for the poses is external or the chosen region of interest is defined in the external frame.

The detected item poses are given relative to the centers of the rectangles, with the z axis pointing to-
wards the camera. Each detected item includes a uuid (Universally Unique Identifier) and the timestamp
of the oldest image that was used to detect it.

5.2.3.3 Computation of grasps
The ItemPick and BoxPickmodules offer a service for computing grasps for suction grippers. The gripper

is defined by its suction surface length and width.

The ItemPickmodule identifies flat surfaces in the scene and supports flexible and/or deformable items.

The type of these item_models is called UNKNOWN since they don’t need to have a standard geometrical
shape. Optionally, the user can also specify the minimum and maximum size of the item.

For BoxPick, the grasps are computed on the detected rectangular items (see Detection of items (BoxPick),
Section 5.2.3.2).

Optionally, further information can be given to the modules in a grasp computation request:

• The ID of the load carrier which contains the items to be grasped.

• A compartment inside the load carrier where to compute grasps (see Load carrier compartments,
Section 5.2.1.3).

• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.

Otherwise, the ID of the 3D region of interest where to compute grasps.

Roboception GmbH

Manual: rc_cube

63 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

• Collision detection information: The ID of the gripper to enable collision checking and optionally

a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below inCollisionCheck (Section 5.2.3.4).
A grasp provided by the ItemPick and BoxPick modules represents the recommended pose of the TCP

(Tool Center Point) of the suction gripper. The grasp type is always set to SUCTION. The computed grasp
pose is the center of the biggest ellipse that can be inscribed in each surface. The grasp orientation is

a right-handed coordinate system and is defined such that its z axis is normal to the surface pointing

inside the object at the grasp position and its x axis is directed along the maximum elongation of the

ellipse.

Fig. 5.14: Illustration of suction grasp with coordinate system and ellipse representing the maximum

suction surface.

Each grasp includes the dimensions of the maximum suction surface available, modelled as an ellipse

of axes max_suction_surface_length and max_suction_surface_width. The user is enabled to filter
grasps by specifying the minimum suction surface required by the suction device in use.

In the BoxPick module, the grasp position corresponds to the center of the detected rectangle and the

dimensions of the maximum suction surface available matches the estimated rectangle dimensions.

Detected rectangles with missing data or occlusions by other objects for more than 15% of their surface

do not get an associated grasp.

Each grasp also includes a quality value, which gives an indication of the flatness of the grasping sur-
face. The quality value varies between 0 and 1, where higher numbers correspond to a flatter recon-
structed surface.

The grasp definition is complemented by a uuid (Universally Unique Identifier) and the timestamp of the
oldest image that was used to compute the grasp.

Grasps sorting is performed based on a combination of

• the distance from the camera along the gravity direction, and

• the size of the item to grasp.

Grasp points on top of a pile and corresponding to larger items are grasped first.

5.2.3.4 Interaction with other modules
Internally, the ItemPick and BoxPick modules depend on, and interact with other on-board modules as

listed below.

Note: All changes and configuration updates to these modules will affect the performance of the
ItemPick and BoxPick modules.

Stereo camera and Stereo matching
The ItemPick and BoxPick modules make internally use of the following data:

Roboception GmbH

Manual: rc_cube

64 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

• Rectified images from the Stereo cameramodule (rc_stereocamera, Section 5.1.1);
• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,
Section 5.1.2).

All processed images are guaranteed to be captured after the module trigger time.

Estimation of gravity vector
For each load carrier detection and grasp computation, the modules estimate the gravity vector by

subscribing to the rc_visard’s IMU data stream.
Note: The gravity vector is estimated from linear acceleration readings from the on-board IMU. For
this reason, the ItemPick and BoxPick modules require the rc_visard to remain still while the gravity
vector is being estimated.

IO and Projector Control
In case the rc_cube is used in conjunction with an external random dot projector and the IO and ProjectorControl module (rc_iocontrol, Section 5.3.4), it is recommended to connect the projector to GPIO Out
1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matching pa-rameters, Section 5.1.2.5), so that on each image acquisition trigger an image with and without projector
pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 5.3.4.1).
In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images (see Stereo camera parameters, Section 5.1.1.4).
Hand-eye calibration
In case the camera has been calibrated to a robot, the ItemPick and BoxPick modules can automatically

provide poses in the robot coordinate frame. For the ItemPick and BoxPick nodes’ Services (Section
5.2.3.7), the frame of the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no prior
knowledge about the pose of the camera in the environment is required. This means that the

configured regions of interest and load carriersmovewith the camera. It is the user’s responsibility

to update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-

board Hand-eye calibration module (Section 5.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is

needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.
All pose_frame values that are not camera or external are rejected.

Roboception GmbH

Manual: rc_cube

65 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

CollisionCheck
Collision checking can be easily enabled for grasp computation of the ItemPick and BoxPick modules by

passing the ID of the used gripper and optionally a pre-grasp offset to the compute_grasps service call.
The gripper has to be defined in the CollisionCheck module (see Setting a gripper (Section 5.3.3.2)) and
details about collision checking are given in Collision checking within other modules (Section 5.3.3.3).
If collision checking is enabled, only grasps which are collision free will be returned. However, the

visualization images on the ItemPick or BoxPick tab of the Web GUI also show colliding grasp points as
black ellipses.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-sionCheck Parameters (Section 5.3.3.4).
5.2.3.5 Parameters
The ItemPick and BoxPick modules are called rc_itempick and rc_boxpick in the REST-API and are
represented by the ItemPick and BoxPick pages in the Modules tab of theWeb GUI (Section 6.1). The user
can explore and configure the rc_itempick and rc_boxpick module’s run-time parameters, e.g. for
development and testing, using the Web GUI or the REST-API interface (Section 6.3).
Parameter overview
These modules offer the following run-time parameters:

Table 5.16: The rc_itempick and rc_boxpickmodules application
parameters

Name Type Min Max Default Description

max_grasps int32 1 20 5 Maximum number of provided grasps

prefer_splits bool false true false Only for rc_boxpick. Indicates whether
rectangles are split into smaller ones when

possible

Table 5.17: The rc_itempick and rc_boxpickmodules load carrier
detection parameters

Name Type Min Max Default Description

load_carrier_crop_distance float64 0.0 0.05 0.005 Safety margin in

meters by which

the load carrier

inner dimensions

are reduced to

define the region

of interest for

detection

load_carrier_model_tolerance float64 0.003 0.025 0.008 Indicates how

much the

estimated load

carrier

dimensions are

allowed to differ

from the load

carrier model

dimensions in

meters

Roboception GmbH

Manual: rc_cube

66 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Table 5.18: The rc_itempick and rc_boxpick modules surface
clustering parameters

Name Type Min Max Default Description

cluster_max_dimension float64 0.05 0.8 0.3 Only for rc_itempick.
Maximum allowed di-

ameter for a cluster in

meters. Clusters with

a diameter larger than

this value are not used

for grasp computation.

cluster_max_curvature float64 0.005 0.5 0.11 Maximum curvature

allowed within one

cluster. The smaller

this value, the more

clusters will be split

apart.

clustering_patch_size int32 3 10 4 Only for rc_itempick.
Size in pixels of the

square patches the

depth map is subdi-

vided into during the

first clustering step

clustering_max_surface_rmse float64 0.0005 0.01 0.004 Maximum root-mean-

square error (RMSE) in

meters of points be-

longing to a surface

clustering_discontinuity_factor float64 0.5 5.0 1.0 Factor used to discrim-

inate depth disconti-

nuities within a patch.

The smaller this value,

the more clusters will

be split apart.

Description of run-time parameters
Each run-time parameter is represented by a row on the Web GUI’s ItemPick or BoxPick page in theMod-ules tab. The name in the Web GUI is given in brackets behind the parameter name and the parameters
are listed in the order they appear in the Web GUI:

max_grasps (Maximum Grasps)
sets the maximum number of provided grasps.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?max_grasps=<value>

prefer_splits (Only for BoxPick, Prefer Splits)
determines whether rectangles should be split into smaller ones if the smaller ones also

match the given item models. This parameter should be set to for packed box layouts in

which the given itemmodels would alsomatch a rectangle of the size of two adjoining boxes.

If this parameter is set to false, the larger rectangles will be preferred in these cases.

Via the REST-API, this parameter can be set as follows.

Roboception GmbH

Manual: rc_cube

67 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?prefer_splits=<value>

cluster_max_dimension (Only for ItemPick, Cluster Maximum Dimension)
is the maximum allowed diameter for a cluster in meters. Clusters with a diameter larger

than this value are not used for grasp computation.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?cluster_max_dimension=<value>

cluster_max_curvature (Cluster Maximum Curvature)
is the maximum curvature allowed within one cluster. The smaller this value, the more

clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?cluster_max_

→˓curvature=<value>

clustering_patch_size (Only for ItemPick, Patch Size)
is the size of the square patches the depth map is subdivided into during the first clustering

step in pixels.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_patch_size=<value>

clustering_discontinuity_factor (Discontinuity Factor)
is the factor used to discriminate depth discontinuities within a patch. The smaller this value,

the more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?clustering_

→˓discontinuity_factor=<value>

clustering_max_surface_rmse (Maximum Surface RMSE)
is the maximum root-mean-square error (RMSE) in meters of points belonging to a surface.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?clustering_max_

→˓surface_rmse=<value>

Roboception GmbH

Manual: rc_cube

68 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

load_carrier_model_tolerance

see Parameters of the load carrier functionality (Section 5.2.1.7).
Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?load_carrier_model_

→˓tolerance=<value>

load_carrier_crop_distance

see Parameters of the load carrier functionality (Section 5.2.1.7).
Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?load_carrier_crop_

→˓distance=<value>

5.2.3.6 Status values
The rc_itempick and rc_boxpickmodules report the following status values:

Table 5.19: The rc_itempick and rc_boxpick modules status val-
ues

Name Description

data_acquisition_time Time in seconds required by the last active service to acquire

images. Standard values are between 0.5 s and 0.6 s with High

depth image quality.

grasp_computation_time Processing time of the last grasp computation in seconds

last_timestamp_processed The timestamp of the last processed dataset

load_carrier_detection_time Processing time of the last load carrier detection in seconds

state The current state of the rc_itempick and rc_boxpick node

The reported state can take one of the following values.

Table 5.20: Possible states of the ItemPick and BoxPick modules

State name Description

IDLE The module is idle.

RUNNING The module is running and ready for load carrier detection and grasp computation.

FATAL A fatal error has occurred.

5.2.3.7 Services
The user can explore and call the rc_itempick and rc_boxpickmodule’s services, e.g. for development
and testing, using the REST-API interface (Section 6.3) or the rc_cube Web GUI (Section 6.1).
Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Roboception GmbH

Manual: rc_cube

69 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Table 5.21: Return codes of the ItemPick and BoxPick services

Code Description

0 Success

-1 An invalid argument was provided

-4 Data acquisition took longer than the maximum allowed time of 5.0 seconds

-10 New element could not be added as the maximum storage capacity of load carriers or

regions of interest has been exceeded

-200 Fatal internal error

-301 More than one item model of type UNKNOWN provided to the compute_grasps service

-302 More than one load carrier provided to the detect_load_carriers or
detect_filling_level services, but only one is supported

10 The maximum storage capacity of load carriers or regions of interest has been reached

11 An existent persistent model was overwritten by the call to set_load_carrier or
set_region_of_interest

100 The requested load carriers were not detected in the scene

101 No valid surfaces or grasps were found in the scene

102 The detected load carrier is empty

103 All computed grasps are in collision with the load carrier

200 The module is in state IDLE

300 A valid robot_pose was provided as argument but it is not required

400 No item_models were provided to the compute_grasps service request

The ItemPick and BoxPick modules offer the following services.

start

Starts the module. If the command is accepted, the module moves to state RUNNING. The
current_state value in the service response may differ from RUNNING if the state transition
is still in process when the service returns.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/start

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module. If the command is accepted, the module moves to state IDLE. The
current_state value in the service response may differ from IDLE if the state transition
is still in process when the service returns.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/stop

Roboception GmbH

Manual: rc_cube

70 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

set_region_of_interest

see set_region_of_interest (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/set_region_of_interest

get_regions_of_interest

see get_regions_of_interest (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/get_regions_of_

→˓interest

delete_regions_of_interest

see delete_regions_of_interest (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/delete_regions_of_

→˓interest

set_load_carrier

see set_load_carrier (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/set_load_carrier

get_load_carriers

see get_load_carriers (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/get_load_carriers

Roboception GmbH

Manual: rc_cube

71 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

delete_load_carriers

see delete_load_carriers (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/delete_load_carriers

detect_load_carriers

see detect_load_carriers (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/detect_load_carriers

detect_filling_level

see detect_filling_level (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/detect_filling_level

detect_items (BoxPick only)
Triggers the detection of rectangles as described in Detection of items (BoxPick) (Section
5.2.3.2).

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_boxpick/services/detect_items

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"item_models": [
{
"rectangle": {

"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

72 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

"z": "float64"
},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Required arguments:

pose_frame: see Hand-eye calibration (Section 5.2.3.4).
item_models: list of rectangles with minimum and maximum size, with
the minimum dimensions strictly smaller than the maximum dimensions.

The dimensions should be given fairly accurately to avoid misdetections,

while still considering a certain tolerance to account for possible produc-

tion variations and measurement inaccuracies.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 5.2.3.4).
Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be
detected.

load_carrier_compartment: compartment inside the load carrier where
to detect items (see Load carrier compartments, Section 5.2.1.3).
region_of_interest_id: if load_carrier_id is set, ID of the 3D region
of interest where to search for the load carriers. Otherwise, ID of the 3D

region of interest where to search for the items.

Response:
The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

73 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

{
"name": "detect_items",
"response": {
"items": [

{
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {

"x": "float64",
"y": "float64"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [
{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

(continues on next page)

Roboception GmbH

Manual: rc_cube

74 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

}
}

],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

load_carriers: list of detected load carriers.

items: list of detected rectangles.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

compute_grasps (for ItemPick)
Triggers the computation of grasping poses for a suction device as described in Computationof grasps (Section 5.2.3.3).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_itempick/services/compute_grasps

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{
"type": "string",
"unknown": {

"max_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

(continues on next page)

Roboception GmbH

Manual: rc_cube

75 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

],
"load_carrier_compartment": {
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Required arguments:

pose_frame: see Hand-eye calibration (Section 5.2.3.4).
suction_surface_length: length of the suction device grasping surface.

suction_surface_width: width of the suction device grasping surface.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 5.2.3.4).
Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be
grasped.

load_carrier_compartment: compartment inside the load carrier where
to compute grasps (see Load carrier compartments, Section 5.2.1.3).
region_of_interest_id: if load_carrier_id is set, ID of the 3D region
of interest where to search for the load carriers. Otherwise, ID of the 3D

region of interest where to compute grasps.

Roboception GmbH

Manual: rc_cube

76 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

item_models: list of unknown items with minimum andmaximum dimen-
sions, with the minimum dimensions strictly smaller than the maximum

dimensions. Only one item_model of type UNKNOWN is currently supported.

collision_detection: see Collision checking within other modules (Section
5.3.3.3).

Response:
The definition for the response with corresponding datatypes is:

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [
{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH

Manual: rc_cube

77 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

load_carriers: list of detected load carriers.

grasps: sorted list of suction grasps.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

compute_grasps (for BoxPick)
Triggers the detection of rectangles and the computation of grasping poses for the detected

rectangles as described in Computation of grasps (Section 5.2.3.3).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_boxpick/services/compute_grasps

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{
"rectangle": {

"max_dimensions": {
"x": "float64",
"y": "float64"

(continues on next page)

Roboception GmbH

Manual: rc_cube

78 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Required arguments:

pose_frame: see Hand-eye calibration (Section 5.2.3.4).
item_models: list of rectangles with minimum and maximum size, with
the minimum dimensions strictly smaller than the maximum dimensions.

The dimensions should be given fairly accurately to avoid misdetections,

while still considering a certain tolerance to account for possible produc-

tion variations and measurement inaccuracies.

suction_surface_length: length of the suction device grasping surface.

suction_surface_width: width of the suction device grasping surface.

Roboception GmbH

Manual: rc_cube

79 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 5.2.3.4).
Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be
grasped.

load_carrier_compartment: compartment inside the load carrier where
to compute grasps (see Load carrier compartments, Section 5.2.1.3).
region_of_interest_id: if load_carrier_id is set, ID of the 3D region
of interest where to search for the load carriers. Otherwise, ID of the 3D

region of interest where to compute grasps.

collision_detection: see Collision checking within other modules (Section
5.3.3.3).

Response:
The definition for the response with corresponding datatypes is:

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"items": [

{
"grasp_uuids": [

"string"
],
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH

Manual: rc_cube

80 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {

"x": "float64",
"y": "float64"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [
{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

(continues on next page)

Roboception GmbH

Manual: rc_cube

81 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

}
}

}

load_carriers: list of detected load carriers.

items: list of detected rectangles.

grasps: sorted list of suction grasps.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

save_parameters

This service saves the currently set parameters persistently. Thereby, the same parameters

will still apply after a reboot of the rc_cube. The node parameters are not persistent over
firmware updates and rollbacks.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/save_parameters

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "save_parameters",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

This service resets all parameters of the module to its default values, as listed in above table.

The reset does not apply to regions of interest and load carriers.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/save_parameters

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

82 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

5.2.4 SilhouetteMatch
5.2.4.1 Introduction
The SilhouetteMatch module is an optional on-board module of the rc_cube and requires a separate
SilhouetteMatch license (Section 7.5) to be purchased.
The module detects objects by matching a predefined silhouette (“template”) to edges in an image.

For the SilhouetteMatch module to work, special object templates are required for each type of object

to be detected. Roboception offers a template generation service on their website (https://roboception.

com/en/template-request/), where the user can upload CAD files or recorded data of the objects and

request object templates for the SilhouetteMatch module.

The object templates consist of significant edges of each object. These template edges are matched to

the edges detected in the left and right camera images, considering the actual size of the objects and

their distance from the camera. The poses of the detected objects are returned and can be used for

grasping, for example.

The SilhouetteMatch module offers:

• A dedicated page on the rc_cube Web GUI (Section 6.1) for easy setup, configuration, testing, and
application tuning.

• A REST-API interface (Section 6.3) and a KUKA Ethernet KRL Interface (Section 6.4).
• The definition of 2D regions of interest to select relevant parts of the camera image (see Setting aregion of interest, Section 5.2.4.3).
• A load carrier detection functionality for bin-picking applications (see LoadCarrier, Section 5.2.1),
to provide grasps for objects inside a bin only.

• The definition of grasp points for each template via an interactive visualization in the Web GUI.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-tion (Section 5.3.1) module, to provide grasps in the user-configured external reference frame.
• Sorting of grasps according to reachability so that the ones which are closest to the camera and

require least rotation of the TCP with respect to its preferred orientation are returned first.

Suitable objects
The SilhouetteMatch module is intended for objects which have significant edges on a common plane

that is parallel to the base plane on which the objects are placed. This applies to flat, nontransparent

objects, such as routed, laser-cut or water-cut 2D parts and flat-machined parts. More complex parts

can also be detected if there are significant edges on a common plane, e.g. a special pattern printed on

a flat surface.

The SilhouetteMatch module works best for objects on a texture-free base plane. The color of the base

plane should be chosen such that a clear contrast between the objects and the base plane appears in

the intensity image.

Suitable scene
The scene must meet the following conditions to be suitable for the SilhouetteMatch module:

• The objects to be detected must be suitable for the SilhouetteMatch module as described above.

• Only objects belonging to one specific template are visible at a time (unmixed scenario). In case

other objects are visible as well, a proper region of interest (ROI) must be set.

• All visible objects are lying on a common base plane, which has to be calibrated.

Roboception GmbH

Manual: rc_cube

83 Rev: 21.04.0

Status: Apr 15, 2021

https://roboception.com/en/template-request/
https://roboception.com/en/template-request/
https://roboception.com/en/template-request/

5.2. Detection modules

• The offset between the base plane normal and the camera’s line of sight does not exceed 10

degrees.

• The objects are not partially or fully occluded.

• All visible objects are right side up (no flipped objects).

• The object edges to be matched are visible in both, left and right camera images.

5.2.4.2 Base-plane calibration
Before objects can be detected, a base-plane calibration must be performed. Thereby, the distance and

angle of the plane on which the objects are placed is measured and stored persistently on the rc_cube.
Separating the detection of the base plane from the actual object detection renders scenarios possible

in which the base plane is temporarily occluded. Moreover, it increases performance of the object

detection for scenarios where the base plane is fixed for a certain time; thus, it is not necessary to

continuously re-detect the base plane.

The base-plane calibration can be performed in three different ways, which will be explained in more

detail further down:

• AprilTag based

• Stereo based

• Manual

The base-plane calibration is successful if the normal vector of the estimated base plane is at most 10

degrees offset to the camera’s line of sight. If the base-plane calibration is successful, it will be stored

persistently on the rc_cube until it is removed or a new base-plane calibration is performed.
Note: To avoid privacy issues, the image of the persistently stored base-plane calibration will appear
blurred after rebooting the rc_cube.

In scenarios where the base plane is not accessible for calibration, a plane parallel to the base-plane

can be calibrated. Then an offset parameter can be used to shift the estimated plane onto the actual
base plane where the objects are placed. The offset parameter gives the distance in meters by which
the estimated plane is shifted towards the camera.

In the REST-API, a plane is defined by a normal and a distance. normal is a normalized 3-vector, spec-
ifying the normal of the plane. The normal points away from the camera. distance represents the
distance of the plane from the camera along the normal. Normal and distance can also be interpreted

as 𝑎, 𝑏, 𝑐, and 𝑑 components of the plane equation, respectively:

𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

AprilTag based base-plane calibration
AprilTag detection (ref. TagDetect, Section 5.2.2) is used to find AprilTags in the scene and fit a plane
through them. At least three AprilTags must be placed on the base plane so that they are visible in the

left and right camera images. The tags should be placed such that they are spanning a triangle that

is as large as possible. The larger the triangle, the more accurate is the resulting base-plane estimate.

Use this method if the base plane is untextured and no external random dot projector is available. This

calibration mode is available via the REST-API interface (Section 6.3) and the rc_cubeWeb GUI.
Stereo based base-plane calibration
The 3D point cloud computed by the stereo matching module is used to fit a plane through its 3D

points. Therefore, the region of interest (ROI) for this method must be set such that only the relevant

Roboception GmbH

Manual: rc_cube

84 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

base plane is included. The plane_preference parameter allows to select whether the plane closest to
or farthest from the camera should be used as base plane. Selecting the closest plane can be used in

scenarios where the base plane is completely occluded by objects or not accessible for calibration. Use

this method if the base plane is well textured or you can make use of a random dot projector to project

texture on the base plane. This calibration mode is available via the REST-API interface (Section 6.3) and
the rc_cubeWeb GUI.
Manual base-plane calibration
The base plane can be set manually if its parameters are known, e.g. from previous calibrations. This

calibration mode is only available via the REST-API interface (Section 6.3) and not the rc_cubeWeb GUI.
5.2.4.3 Setting a region of interest
If objects are to be detected only in part of the camera’s field of view, a 2D region of interest (ROI) can

be set accordingly as described in Region of interest (Section 5.3.2.2).
5.2.4.4 Setting of grasp points
To use SilhouetteMatch directly in a robot application, grasp points can be defined for each template.

A grasp point represents the desired position and orientation of the robot’s TCP (Tool Center Point) to

grasp an object as shown in Fig. 5.15.

y

z

x
PgraspTCP y

z

x

Fig. 5.15: Definition of grasp points with respect to the robot’s TCP

Each grasp consists of an id which must be unique within all grasps for an object template, the
template_id representing the template to which the grasp should be attached, and the pose in the
coordinate frame of the object template. Grasp points can be set via the REST-API interface (Section 6.3),
or by using the interactive visualization in the Web GUI. The rc_cube can store up to 50 grasp points per
template.

Setting grasp points in the Web GUI
The rc_cube Web GUI provides an intuitive and interactive way of defining grasp points for object tem-
plates. In a first step, the object template has to be uploaded to the rc_cube. This can be done on theSilhouetteMatch page in theModules tab of the Web GUI by clicking on add new Template in the Templatesand Grasps section of the SilhouetteMatch page. Once the template upload is complete, a dialog with
a 3D visualization of the object template is shown for adding or editing grasp points. The same dialog

appears when editing an existing template. If the template contains a collision model or a visualization

model, this 3D model is visualized as well.

This dialog provides two ways for setting grasp points:

1. Adding grasps manually: By clicking on the + symbol, a new grasp is placed in the object origin.
The grasp can be given a unique name which corresponds to its ID. The desired pose of the grasp

can be entered in the fields for Position and Roll/Pitch/Yaw which are given in the coordinate frame

Roboception GmbH

Manual: rc_cube

85 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

of the object template represented by the long x, y and z axes in the visualization. The grasp point

can be placed freely with respect to the object template - inside, outside or on the surface. The

grasp point and its orientation are visualized in 3D for verification.

2. Adding grasps interactively: Grasp points can be added interactively by first clicking on the AddGrasp button in the upper left corner of the visualization and then clicking on the desired point
on the object template visualization. If the 3D model is displayed, the grasps will be attached to

the surface of the 3D model. Otherwise, the grasp is attached to the template surface. The grasp

orientation is a right-handed coordinate system and is chosen such that its z axis is perpendicular

to the surface pointing inside the template at the grasp position. The position and orientation in

the object coordinate frame is displayed on the right. The position and orientation of the grasp

can also be changed interactively. In case Snap to surface is enabled in the visualization (default),
the grasp can be moved along the template or model surface by clicking on the Translate button
in the visualization and then clicking on the grasp point and dragging it to the desired position.

The orientation of the grasp around the surface normal can also be changed by choosing Rotate
and then rotating the grasp with the cursor. In case Snap to surface is disabled, the grasp can be
translated and rotated freely in all three dimensions.

If the object template has symmetries, the grasps which are symmetric to the defined grasps can be

displayed by clicking on Show symmetric grasps.
Setting grasp points via the REST-API
Grasp points can be set via the REST-API interface (Section 6.3) using the set_grasp or set_all_grasps
services (see Services, Section 5.2.4.10). In the SilhouetteMatch module a grasp consists of the

template_id of the template to which the grasp should be attached, an id uniquely identifying the
grasp point and the pose. The pose is given in the coordinate frame of the object template and consists
of a position in meters and an orientation as quaternion.

5.2.4.5 Setting the preferred orientation of the TCP
The SilhouetteMatch module determines the reachability of grasp points based on the preferred orien-tation of the gripper or TCP. The preferred orientation can be set via the set_preferred_orientation
service or on the SilhouetteMatch page in the Web GUI. The resulting direction of the TCP’s z axis is used
to reject grasps which cannot be reached by the gripper. Furthermore, the preferred orientation is used

to sort the reachable grasps. Grasps sorting is performed based on a combination of

• the distance from the camera along the z axis of the preferred orientation of the TCP, and

• the rotation difference between the preferred orientation and the grasp orientation.

Grasp points which are closest to the camera and require least rotation of the TCP are returned first.

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,

in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-

dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object

detection call, so that the preferred orientation can be used for filtering and sorting the grasps on the

detected objects. If no preferred orientation is set, the orientation of the left camera is used as the

preferred orientation of the TCP.

5.2.4.6 Detection of objects
Objects can only be detected after a successful base-plane calibration. It must be ensured that the

position and orientation of the base plane does not change before the detection of objects. Otherwise,

the base-plane calibration must be renewed.

For triggering the object detection, in general, the following information must be provided to the Silhou-

etteMatch module:

• The template of the object to be detected in the scene.

Roboception GmbH

Manual: rc_cube

86 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

• The coordinate frame in which the poses of the detected objects shall be returned (ref. Hand-eyecalibration, Section 5.2.4.7).
Optionally, further information can be given to the SilhouetteMatch module:

• An offset in case the objects are lying not on the base plane but on a plane parallel to it. The

offset is the distance between both planes given in the direction towards the camera. If omitted,

an offset of 0 is assumed.

• The ID of the load carrier which contains the objects to be detected.

• The ID of the region of interest where to search for the load carrier if a load carrier is set. Other-

wise, the ID of the region of interest where the objects should be detected. If omitted, objects are

matched in the whole image.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate

frame for the poses is external or the preferred orientation is given in the external frame.

• Collision detection information: The ID of the gripper to enable collision checking and optionally

a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below inCollisionCheck (Section 5.2.4.7).
On the Web GUI the detection can be tested in the Try Out section of the SilhouetteMatch module’s tab.
The result is visualized as shown in Fig. 5.16.

Fig. 5.16: Result image of the SilhouetteMatch module as shown in the Web GUI

The left image shows the calibrated base plane in blue and the template to be matched in red with the

defined grasp points in green (see Setting of grasp points, Section 5.2.4.4). The template is warped to the
size and tilt matching objects on the calibrated base plane would have.

The right image shows the detection result. The shaded blue area on the left is the region of the left

camera image which does not overlap with the right image, and in which no objects can be detected.

The chosen region of interest is shown as bold petrol rectangle. The detected edges in the image are

shown in light blue and the matches with the template (instances) are shown in red. The blue circles
are the origins of the detected objects as defined in the template and the green circles are the reachable

grasp points. Unreachable grasp points will be visualized as red dots (not shown in the figure).

The poses of the object origins in the chosen coordinate frame are returned as results. If the chosen

template also has grasp points attached, a list of grasps for all objects sorted by their reachability (seeSetting the preferred orientation of the TCP, Section 5.2.4.5) is returned in addition to the list of detected
objects. The grasp poses are given in the desired coordinate frame. There are references between

the detected object instances and the grasps via their uuids. In case the templates have a continuous
rotational symmetry, all returned object poses will have the same orientation. For rotationally non-

symmetric objects, the orientation of the detected objects is aligned with the normal of the base plane.

Roboception GmbH

Manual: rc_cube

87 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

The detection results and runtimes are affected by several run-time parameters which are listed and

explained further down. Improper parameters can lead to time-outs of the SilhouetteMatch module’s

detection process.

5.2.4.7 Interaction with other modules
Internally, the SilhouetteMatchmodule depends on, and interacts with other on-boardmodules as listed

below.

Note: All changes and configuration updates to these modules will affect the performance of the
SilhouetteMatch module.

Stereo camera and stereo matching
The SilhouetteMatch module makes internally use of the rectified images from the Stereo cameramod-
ule (rc_stereocamera, Section 5.1.1). Thus, the exposure time should be set properly to achieve the
optimal performance of the module.

For base-plane calibration in stereo mode the disparity images from the Stereo matching module
(rc_stereomatching, Section 5.1.2) are used. Apart from that, the stereo-matching module should not
be run in parallel to the SilhouetteMatch module, because the detection runtime increases.

For best results it is recommended to enable smoothing (Section 5.1.2.5) for Stereo matching.
IO and Projector Control
In case the rc_cube is used in conjunction with an external random dot projector and the IO and ProjectorControl module (rc_iocontrol, Section 5.3.4), the projector should be used for the stereo-based base-
plane calibration.

The projected pattern must not be visible in the left and right camera images during object detection

as it interferes with the matching process. Therefore, it must either be switched off or operated in

ExposureAlternateActivemode.

Hand-eye calibration
In case the camera has been calibrated to a robot, the SilhouetteMatch module can automatically pro-

vide poses in the robot coordinate frame. For the SilhouetteMatch node’s Services (Section 5.2.4.10),
the frame of the input and output poses and plane coordinates can be controlled with the pose_frame
argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses and plane coordinates provided to and by the module are in
the camera frame.

2. External frame (external). All poses and plane coordinates provided to and by the module are in
the external frame, configured by the user during the hand-eye calibration process. The module

relies on the on-board Hand-eye calibration module (Section 5.3.1) to retrieve the camera mounting
(static or robot mounted) and the hand-eye transformation. If the sensor mounting is static, no

further information is needed. If the sensor is robot-mounted, the robot_pose is required to
transform poses to and from the external frame.

All pose_frame values that are not camera or external are rejected.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

Roboception GmbH

Manual: rc_cube

88 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Note: If the hand-eye calibration has changed after base-plane calibration, the base-plane calibration
will be marked as invalid and must be renewed.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame and the definition of the preferred TCP orientation:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the preferred TCP orientation is defined in external, providing the robot pose is obligatory.

• If pose_frame is set to camera and the preferred TCP orientation is defined in camera, providing
the robot pose is optional.

If the current robot pose is provided during calibration, it is stored persistently on the rc_cube. If the
updated robot pose is later provided during get_base_plane_calibration or detect_object as well,
the base-plane calibration will be transformed automatically to this new robot pose. This enables the

user to change the robot pose (and thus camera position) between base-plane calibration and object

detection.

Note: Object detection can only be performed if the limit of 10 degrees angle offset between the
base plane normal and the camera’s line of sight is not exceeded.

CollisionCheck
Collision checking can be easily enabled for grasp computation of the SilhouetteMatch module by

passing a collision_detection argument to the detect_object service call. It contains the ID of

the used gripper and optionally a pre-grasp offset. The gripper has to be defined in the Colli-

sionCheck module (see Setting a gripper (Section 5.3.3.2)) and details about collision checking are
given in Collision checking within other modules (Section 5.3.3.3). In addition to collision checking be-

tween the gripper and the detected load carrier, collisions between the gripper and the calibrated

base plane will be checked, if the run-time parameter check_collisions_with_base_plane is true.
If the selected SilhouetteMatch template contains a collision model and the run-time parameter

check_collisions_with_matches is true, also collisions between the gripper and all other detected ob-
jects (not limited to max_number_of_detected_objects) will be checked. The object on which the grasp
point to be checked is located, is excluded from the collision check.

If collision checking is enabled, only grasps which are collision free will be returned. However, the

visualization images on the SilhouetteMatch tab of the Web GUI also shows colliding grasp points in red.
The objects which are considered in the collision check are also visualized with their edges in red.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-sionCheck Parameters (Section 5.3.3.4).
5.2.4.8 Parameters
The SilhouetteMatch software module is called rc_silhouettematch in the REST-API and is represented
by the SilhouetteMatch page in the Modules tab of the Web GUI (Section 6.1). The user can explore and
configure the rc_silhouettematch module’s run-time parameters, e.g. for development and testing,
using the Web GUI or the REST-API interface (Section 6.3).
Parameter overview
This module offers the following run-time parameters:

Roboception GmbH

Manual: rc_cube

89 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Table 5.22: The rc_silhouettematch module’s run-time parame-
ters

Name Type Min Max Default Description

check_collisions_with_-
base_plane

bool false true true Whether to check for

collisions between

gripper and base

plane

check_collisions_with_matches bool false true true Whether to check for

collisions between

gripper and detected

matches

edge_sensitivity float64 0.1 1.0 0.6 Sensitivity of the edge

detector

load_carrier_crop_distance float64 0.0 0.05 0.005 Safety margin in me-

ters by which the load

carrier inner dimen-

sions are reduced to

define the region of in-

terest for detection

load_carrier_model_tolerance float64 0.003 0.025 0.008 Indicates how much

the estimated load car-

rier dimensions are al-

lowed to differ from

the load carrier model

dimensions in meters

match_max_distance float64 0.0 10.0 2.5 Maximum allowed

distance in pixels be-

tween the template

and the detected

edges in the image

match_percentile float64 0.7 1.0 0.85 Percentage of tem-

plate pixels that must

be within the max-

imum distance to

successfully match the

template

max_number_of_detected_objects int32 1 20 10 Maximum number of

detected objects

quality string - - High Quality: [Low, Medium,

High]

Description of run-time parameters
Each run-time parameter is represented by a row on the Web GUI’s SilhouetteMatch Module tab. The

name in the Web GUI is given in brackets behind the parameter name and the parameters are listed in

the order they appear in the Web GUI:

max_number_of_detected_objects (Maximum Object Number)
This parameter gives the maximum number of objects to detect in the scene. If more than

the given number of objects can be detected in the scene, only the objects with the highest

matching results are returned.

Via the REST-API, this parameter can be set as follows.

Roboception GmbH

Manual: rc_cube

90 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?max_number_of_detected_

→˓objects=<value>

quality (Quality)
Object detection can be performed on images with different resolutions: High (1280 x 960),
Medium (640 x 480) and Low (320 x 240). The lower the resolution, the lower the detection
time, but the fewer details of the objects are visible.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?quality=<value>

match_max_distance (Maximum Matching Distance)
This parameter gives the maximum allowed pixel distance of an image edge pixel from the

object edge pixel in the template to be still considered as matching. If the object is not per-

fectly represented in the template, it might not be detected when this parameter is low. High

values, however, might lead to false detections in case of a cluttered scene or the presence

of similar objects, and also increase runtime.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_max_distance=<value>

match_percentile (Matching Percentile)
This parameter indicates how strict the matching process should be. The matching per-

centile is the ratio of template pixels that must be within the Maximum Matching Distance

to successfully match the template. The higher this number, the more accurate the match

must be to be considered as valid.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_percentile=<value>

edge_sensitivity (Edge Sensitivity)
This parameter influences how many edges are detected in the camera images. The higher

this number, the more edges are found in the intensity image. That means, for lower num-

bers, only the most significant edges are considered for template matching. A large number

of edges in the image might increase the detection time.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?edge_sensitivity=<value>

check_collisions_with_base_plane (Check Collisions with Base Plane)
If this parameter is set to true, and collision checking is enabled by passing a gripper to the

detect_object service call, all grasp points will be checked for collisions between the gripper
and the calibrated base plane, and only grasp points at which the gripper would not collide

with the base plane will be returned.

Roboception GmbH

Manual: rc_cube

91 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓base_plane=<value>

check_collisions_with_matches (Check Collisions with Matches)
If this parameter is set to true, and collision checking is enabled by passing a gripper to the

detect_object service call, all grasp points will be checked for collisions between the gripper
and all other detected objects (not limited to max_number_of_detected_objects), and only
grasp points at which the gripper would not collide with any other detected object will be

returned.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓matches=<value>

load_carrier_model_tolerance

see Parameters of the load carrier functionality (Section 5.2.1.7).
Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?load_carrier_model_

→˓tolerance=<value>

load_carrier_crop_distance

see Parameters of the load carrier functionality (Section 5.2.1.7).
Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?load_carrier_crop_

→˓distance=<value>

5.2.4.9 Status values
This module reports the following status values:

Table 5.23: The rc_silhouettematchmodule’s status values

Name Description

calibrate_service_time Processing time of the base-plane calibration, including data

acquisition time

data_acquisition_time Time in seconds required by the last active service to acquire

images

load_carrier_detection_time Processing time of the last load carrier detection in seconds

detect_service_time Processing time of the object dection, including data acquisition

time

last_timestamp_processed The timestamp of the last processed dataset

Roboception GmbH

Manual: rc_cube

92 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

5.2.4.10 Services
The user can explore and call the rc_silhouettematch module’s services, e.g. for development and
testing, using the REST-API interface (Section 6.3) or the rc_cube Web GUI (Section 6.1).
Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion.

Table 5.24: Return codes of the SilhouetteMatch module services

Code Description

0 Success

-1 An invalid argument was provided

-3 An internal timeout occurred, e.g. during object detection

-4 Data acquisition took longer than the maximum allowed time of 5.0 seconds

-7 Data could not be read or written to persistent storage

-8 Module is not in a state in which this service can be called. E.g. detect_object cannot be
called if there is no base-plane calibration.

-10 New element could not be added as the maximum storage capacity of regions of interest or

templates has been exceeded

-100 An internal error occurred

-101 Detection of the base plane failed

-102 The hand-eye calibration changed since the last base-plane calibration

-104 Offset between the base plane normal and the camera’s line of sight exceeds 10 degrees

10 The maximum storage capacity of regions of interest or templates has been reached

11 An existing element was overwritten

100 The requested load carrier was not detected in the scene

101 None of the detected grasps is reachable

102 The detected load carrier is empty

103 All detected grasps are in collision

107 The base plane was not transformed to the current camera pose, e.g. because no robot

pose was provided during base-plane calibration

108 The template is deprecated.

151 The object template has a continuous symmetry

999 Additional hints for application development

The SilhouetteMatch module offers the following services.

calibrate_base_plane

Triggers the calibration of the base plane, as described in Base-plane calibration (Section
5.2.4.2). A successful base-plane calibration is stored persistently on the rc_cube and re-
turned by this service. The base-plane calibration is persistent over firmware updates and

rollbacks.

All images used by the service are guaranteed to be newer than the service trigger time.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/calibrate_base_plane

Request:
The definition for the request arguments with corresponding datatypes

is:

Roboception GmbH

Manual: rc_cube

93 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

{
"args": {

"offset": "float64",
"plane": {

"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"plane_estimation_method": "string",
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"stereo": {

"plane_preference": "string"
}

}
}

Required arguments:

plane_estimation_method: method to use for base-plane calibration.
Valid values are STEREO, APRILTAG, MANUAL.

pose_frame: see Hand-eye calibration (Section 5.2.4.7).
Potentially required arguments:

plane if plane_estimation_method is MANUAL: plane that will be set as
base-plane calibration.

robot_pose: see Hand-eye calibration (Section 5.2.4.7).
region_of_interest_2d_id: ID of the region of interest for base-plane
calibration.

Optional arguments:

offset: offset in meters by which the estimated plane will be shifted to-
wards the camera.

plane_preference in stereo: whether the plane closest to or farthest
from the camera should be used as base plane. This option can be set

only if plane_estimation_method is STEREO. Valid values are CLOSEST and
FARTHEST. If not set, the default is FARTHEST.

Response:
The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

94 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

{
"name": "calibrate_base_plane",
"response": {
"plane": {

"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

plane: calibrated base plane.

timestamp: timestamp of the image set the calibration ran on.

return_code: holds possible warnings or error codes and messages.

get_base_plane_calibration

Returns the configured base-plane calibration.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_base_plane_calibration

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"pose_frame": "string",
"robot_pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Required arguments:

pose_frame: see Hand-eye calibration (Section 5.2.4.7).

Roboception GmbH

Manual: rc_cube

95 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 5.2.4.7).
Response:

The definition for the response with corresponding datatypes is:

{
"name": "get_base_plane_calibration",
"response": {
"plane": {

"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_base_plane_calibration

Deletes the configured base-plane calibration.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_base_plane_

→˓calibration

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "delete_base_plane_calibration",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest_2d

see set_region_of_interest_2d (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_region_of_interest_2d

Roboception GmbH

Manual: rc_cube

96 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

get_regions_of_interest_2d

see get_regions_of_interest_2d (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_regions_of_interest_2d

delete_regions_of_interest_2d

see delete_regions_of_interest_2d (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_regions_of_interest_

→˓2d

set_load_carrier

see set_load_carrier (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_load_carrier

get_load_carriers

see get_load_carriers (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_load_carriers

delete_load_carriers

see delete_load_carriers (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_load_carriers

detect_load_carriers

see detect_load_carriers (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_load_carriers

Roboception GmbH

Manual: rc_cube

97 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

detect_filling_level

see detect_filling_level (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_filling_level

set_preferred_orientation

Persistently stores the preferred orientation of the gripper to compute the reachability of

the grasps, which is used for filtering and sorting the grasps returned by the detect_object
service (see Setting the preferred orientation of the TCP, Section 5.2.4.5).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_preferred_orientation

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the gripper to compute the reachability of the grasps,

which is used for filtering and sorting the grasps returned by the detect_object service (seeSetting the preferred orientation of the TCP, Section 5.2.4.5).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_preferred_orientation

This service has no arguments.

The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

98 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_grasp

Persistently stores a grasp for the given object template on the rc_cube. All configured grasps
are persistent over firmware updates and rollbacks.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_grasp

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
}

}

The definition for the response with corresponding datatypes is:

{
"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

99 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Details for the definition of the grasp type are given in Setting of grasp points (Section 5.2.4.4).
set_all_grasps

Replaces the list of grasps for the given object template on the rc_cube.
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_all_grasps

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
],
"template_id": "string"

}
}

The definition for the response with corresponding datatypes is:

{
"name": "set_all_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Details for the definition of the grasp type are given in Setting of grasp points (Section 5.2.4.4).
get_grasps

Returns all configured grasps which have the requested grasp_ids and belong to the re-
quested template_ids. If no grasp_ids are provided, all grasps belonging to the requested
template_ids are returned. If no template_ids are provided, all grasps with the requested
grasp_ids are returned. If neither IDs are provided, all configured grasps are returned.

This service can be called as follows.

Roboception GmbH

Manual: rc_cube

100 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_grasps

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "get_grasps",
"response": {
"grasps": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_grasps

Deletes all grasps with the requested grasp_ids that belong to the requested template_ids.
If no grasp_ids are provided, all grasps belonging to the requested template_ids are
deleted. The template_ids list must not be empty.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_grasps

The definition for the request arguments with corresponding datatypes is:

{
"args": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

101 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "delete_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_symmetric_grasps

Returns all grasps that are symmetric to the given grasp. The first grasp in the returned list is

the one that was passed with the service call. If the object template does not have an exact

symmetry, only the grasp passed with the service call will be returned. If the object template

has a continuous symmetry (e.g. a cylindrical object), only 12 equally spaced sample grasps

will be returned.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_symmetric_grasps

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
}

}

The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

102 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

{
"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Details for the definition of the grasp type are given in Setting of grasp points (Section 5.2.4.4).
detect_object

Triggers an object detection as described in Detection of objects (Section 5.2.4.6) and returns
the pose of all found object instances. The maximum number of returned instances can be

controlled with the max_number_of_detected_objects parameter.

All images used by the service are guaranteed to be newer than the service trigger time.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_object

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"load_carrier_id": "string",
"object_to_detect": {
"object_id": "string",
"region_of_interest_2d_id": "string"

(continues on next page)

Roboception GmbH

Manual: rc_cube

103 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

},
"offset": "float64",
"pose_frame": "string",
"robot_pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Required arguments:

object_id in object_to_detect: ID of the template which should be de-
tected.

pose_frame: see Hand-eye calibration (Section 5.2.4.7).
Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 5.2.4.7).
Optional arguments:

offset: offset in meters by which the base-plane calibration will be
shifted towards the camera.

load_carrier_id: ID of the load carrier which contains the items to be
detected.

collision_detection: see Collision checking within other modules (Section
5.3.3.3).

Response:
The definition for the response with corresponding datatypes is:

{
"name": "detect_object",
"response": {
"grasps": [

{
"id": "string",
"instance_uuid": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}

(continues on next page)

Roboception GmbH

Manual: rc_cube

104 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

},
"pose_frame": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"instances": [

{
"grasp_uuids": [

"string"
],
"id": "string",
"object_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

105 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"object_id": "string",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

object_id: ID of the detected template.

instances: list of detected object instances.

grasps: list of grasps on the detected objects. The grasps are ordered by their
reachability starting with the grasp that can be reached most easily by the robot.

The instance_uuid gives the reference to the detected object in instances this
grasp belongs to.

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

save_parameters

This service saves the currently set parameters persistently. Thereby, the same parameters

will still apply after a reboot of the rc_cube. The node parameters are not persistent over
firmware updates and rollbacks.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/save_parameters

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "save_parameters",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

106 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

reset_defaults

This service resets all parameters of the module to its default values, as listed in above table.

The reset does not apply to regions of interest and base-plane calibration.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/reset_defaults

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

5.2.4.11 Template Upload
For template upload, download and listing, special REST-API endpoints are provided. Up to 50 templates

can be stored persistently on the rc_cube.
GET /nodes/rc_silhouettematch/templates

Get list of all rc_silhouettematch templates.

Template request
GET /api/v1/nodes/rc_silhouettematch/templates HTTP/1.1

Template response
HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns array of Template)
• 404 Not Found – node not found

Referenced Data Models
• Template (Section 6.3.3)

GET /nodes/rc_silhouettematch/templates/{id}
Get a rc_silhouettematch template. If the requested content-type is application/octet-stream, the

template is returned as file.

Roboception GmbH

Manual: rc_cube

107 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

5.2. Detection modules

Template request
GET /api/v1/nodes/rc_silhouettematch/templates/<id> HTTP/1.1

Template response
HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters
• id (string) – id of the template (required)

Response Headers
• Content-Type – application/json application/octet-stream

Status Codes
• 200 OK – successful operation (returns Template)
• 404 Not Found – node or template not found

Referenced Data Models
• Template (Section 6.3.3)

PUT /nodes/rc_silhouettematch/templates/{id}
Create or update a rc_silhouettematch template.

Template request
PUT /api/v1/nodes/rc_silhouettematch/templates/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response
HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters
• id (string) – id of the template (required)

Form Parameters
• file – template file (required)

Request Headers
• Accept – multipart/form-data application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns Template)
• 400 Bad Request – Template is not valid or max number of templates reached

Roboception GmbH

Manual: rc_cube

108 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

5.2. Detection modules

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-

ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models
• Template (Section 6.3.3)

DELETE /nodes/rc_silhouettematch/templates/{id}
Remove a rc_silhouettematch template.

Template request
DELETE /api/v1/nodes/rc_silhouettematch/templates/<id> HTTP/1.1
Accept: application/json

Parameters
• id (string) – id of the template (required)

Request Headers
• Accept – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-

ule.

• 404 Not Found – node or template not found

5.2.5 CADMatch
5.2.5.1 Introduction
The CADMatch module is an optional module of the rc_cube and requires a separate CADMatch license
(Section 7.5) to be purchased.

This module provides an out-of-the-box perception solution for 3D object detection and grasping. CAD-

Match targets the detection of 3D objects based on a CAD template for picking with a general gripper.

The objects can be located in a bin or placed arbitrarily in the field of view of the camera.

For the CADMatch module to work, special object templates are required for each type of object to be

detected. Please get in touch with the Roboception support (Contact, Section 9) to order a template for
your CAD file.

The CADMatch module offers:

• A dedicated page on the rc_cube Web GUI (Section 6.1) for easy setup, configuration, testing, and
application tuning.

• A REST-API interface (Section 6.3) and a KUKA Ethernet KRL Interface (Section 6.4).
• The definition of regions of interest to select relevant volumes in the scene (see Region of interest,
Section 5.3.2).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier, Section 5.2.1),
to provide grasps for objects inside a bin only.

Roboception GmbH

Manual: rc_cube

109 Rev: 21.04.0

Status: Apr 15, 2021

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

5.2. Detection modules

• The definition of compartments inside a load carrier to provide grasps for specific volumes of the

bin only.

• The definition of grasp points for each template via an interactive visualization in the Web GUI

• Support for static and robot-mounted cameras and. optional integration with the Hand-eye cali-bration (Section 5.3.1) module, to provide grasps in the user-configured external reference frame.
• Sorting of grasps according to reachability so that the best ones are returned first.

5.2.5.2 Setting of grasp points
The CADMatch module detects 3D objects in a scene based on a CAD template and returns the poses

of the object origins. To use CADMatch directly in a robot application, grasp points can be defined for

each template. A grasp point represents the desired position and orientation of the robot’s TCP (Tool

Center Point) to grasp an object as shown in Fig. 5.17

y

z

x
Pgrasp

y
z

x
TCP

Fig. 5.17: Definition of grasp points with respect to the robot’s TCP

Each grasp consists of an id which must be unique within all grasps for an object template, the
template_id representing the template the grasp should be attached to, and the pose in the coordi-
nate frame of the object template. Grasp points can be set via the REST-API interface (Section 6.3), or
by using the interactive visualization in the Web GUI. The rc_cube can store up to 50 grasp points per
template.

Setting grasp points in the Web GUI
The rc_cube Web GUI provides an intuitive and interactive way of defining grasp points for object tem-
plates. In a first step, the object template has to be uploaded to the rc_cube. This can be done on theCADMatch page in the Modules tab of the Web GUI by clicking on add new Template in the Templates andGrasps section of the CADMatch page. Once the template upload is complete, a dialog with a 3D visual-
ization of the object for adding or editing grasp points is shown. The same dialog appears when editing

an existing template.

This dialog provides two ways for setting grasp points:

1. Adding grasps manually: By clicking on the + symbol, a new grasp is placed in the object origin.
The grasp can be given a unique name which corresponds to its ID. The desired pose of the grasp

can be entered in the fields for Position and Roll/Pitch/Yaw which are given in the coordinate frame
of the object template represented by the long x, y and z axes in the visualization. The grasp point

can be placed freely with respect to the object template - inside, outside or on the surface. The

grasp point and its orientation are visualized in 3D for verification.

2. Adding grasps interactively: Grasp points can be added interactively by first clicking on the AddGrasp button in the upper left corner of the visualization and then clicking on the desired point
on the object template visualization. The grasp is attached to the object surface. The grasp ori-

entation is a right-handed coordinate system and is chosen such that its z axis is normal to the

surface pointing inside the object at the grasp position. The position and orientation in the object

coordinate frame is displayed on the right. The position and orientation of the grasp can also be

changed interactively. In case Snap to surface is enabled in the visualization (default), the grasp can
be moved along the object surface by clicking on the Translate button in the visualization and then

Roboception GmbH

Manual: rc_cube

110 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

clicking on the grasp point and dragging it to the desired position. The orientation of the grasp

around the surface normal can also be changed by choosing Rotate and then rotating the grasp
with the cursor. In case Snap to surface is disabled, the grasp can be translated and rotated freely
in all three dimensions.

If the object template has symmetries, the grasps which are symmetric to the defined grasps can be

displayed by clicking on Show symmetric grasps.
Setting grasp points via the REST-API
Grasp points can be set via the REST-API interface (Section 6.3) using the set_grasp or set_all_grasps
service calls (see Services, Section 5.2.5.8). In the CADMatch module a grasp consists of the template_id
of the template the grasp should be attached to, an id uniquely identifying the grasp point and the pose
with position in meters and orientation as quaternion in the coordinate frame of the object template.

5.2.5.3 Setting the preferred orientation of the TCP
The CADMatch module determines the reachability of grasp points based on the preferred orientation
of the gripper or TCP. The preferred orientation can be set via the set_preferred_orientation service
call or on the CADMatch page in the Web GUI. The resulting direction of the TCP’s z axis is used to reject
grasps which cannot be reached by the gripper.

Furthermore, the preferred orientation is used to sort the reachable grasps. Grasps sorting is performed

based on a combination of

• the matching score of the object the grasp is located on, and

• the distance from the camera along the z axis of the preferred orientation of the TCP.

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,

in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-

dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object

detection call, so that the preferred orientation can be used for filtering and sorting the grasps on the

detected objects. If no preferred orientation is set, the orientation of the left camera is used as the

preferred orientation of the TCP.

5.2.5.4 Detection of objects
The CADMatch module requires an object template for object detection. This template contains infor-

mation about the 3D shape of the object and prominent edges that can be visible in the camera images.

The object detection is a two-stage process consisting of a prior estimation step and a pose refinement

step. First, a pose prior is computed based on the appearance of the object in the camera images.

Second, the pose is refined by using the 3D point cloud and edges in the camera image. For this to

work, the objects to detect must be visible in both left and right camera images.

For triggering the object detection, in general, the following information must be provided to the CAD-

Match module:

• The template ID of the object to be detected in the scene.

• The coordinate frame in which the poses of the detected objects and the grasp points shall be

returned (ref. Hand-eye calibration, Section 5.2.5.5).
Optionally, further information can be given to the CADMatch module:

• The ID of the load carrier which contains the items to be detected.

• A compartment inside the load carrier where to detect objects (see Load carrier compartments,
Section 5.2.1.3).

Roboception GmbH

Manual: rc_cube

111 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.

Otherwise, the ID of the 3D region of interest where to search for the objects.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate

frame for the poses is external, or the preferred orientation is given in the external frame, or the
chosen region of interest is defined in the external frame.

• Collision detection information: The ID of the gripper to enable collision checking and optionally

a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below inCollisionCheck (Section 5.2.5.5).
On the Web GUI the detection can be tested in the Try Out section of the CADMatch module’s page.
The detected objects are returned in a list of matches. Each detected object includes a uuid (Univer-
sally Unique Identifier) and the timestamp of the oldest image that was used to detect it. The pose
of a detected object corresponds to the pose of the origin of the object template used for detection.

Furthermore, the matching score is given to indicate the quality of the detection.

If the chosen template also has grasp points attached (see Setting of grasp points, Section 5.2.5.2), a list of
grasps for all objects sorted by their reachability (see Setting the preferred orientation of the TCP, Section
5.2.5.3) is returned in addition to the list of detected objects. The grasp poses are given in the desired

coordinate frame. There are references between the detected objects and the grasps via their uuids.

Note: The first detection call with a new object template takes longer than the following detection
calls, because the object template has to be loaded into the CADMatch module first.

5.2.5.5 Interaction with other modules
Internally, the CADMatch module depends on, and interacts with other on-board modules as listed

below.

Note: All changes and configuration updates to these modules will affect the performance of the
CADMatch modules.

Stereo camera and Stereo matching
The CADMatch module makes internally use of the following data:

• Rectified images from the Stereo cameramodule (rc_stereocamera, Section 5.1.1);
• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,
Section 5.1.2).

The quality parameter of the stereo matching module must be set to Medium or higher (see Parameters,
Section 5.1.2.5). We recommend Full or High quality for using CADMatch.

All processed images are guaranteed to be captured after the module trigger time.

Estimation of gravity vector
For each load carrier detection or object detection inside a load carrier, themodule estimates the gravity

vector by subscribing to the rc_visard’s IMU data stream.
Note: The gravity vector is estimated from linear acceleration readings from the on-board IMU. For
this reason, the CADMatch module requires the rc_visard to remain still while the gravity vector is
being estimated.

Roboception GmbH

Manual: rc_cube

112 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

IO and Projector Control
In case the rc_cube is used in conjunction with an external random dot projector and the IO and ProjectorControl module (rc_iocontrol, Section 5.3.4), it is recommended to connect the projector to GPIO Out
1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matching pa-rameters, Section 5.1.2.5), so that on each image acquisition trigger an image with and without projector
pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 5.3.4.1).
In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images (see Stereo camera parameters, Section 5.1.1.4).
Hand-eye calibration
In case the camera has been calibrated to a robot, the CADMatch module can automatically provide

poses in the robot coordinate frame. For the CADMatch node’s Services (Section 5.2.5.8), the frame of
the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no prior
knowledge about the pose of the camera in the environment is required. This means that the

configured regions of interest and load carriersmovewith the camera. It is the user’s responsibility

to update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-

board Hand-eye calibration module (Section 5.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is

needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.
All pose_frame values that are not camera or external are rejected.

CollisionCheck
Collision checking can be easily enabled for grasp computation of the CADMatch module by passing a

collision_detection argument to the detect_object service call. It contains the ID of the used gripper
and optionally a pre-grasp offset. The gripper has to be defined in the CollisionCheckmodule (see Settinga gripper (Section 5.3.3.2)) and details about collision checking are given in Collision checking within othermodules (Section 5.3.3.3). If the selected CADMatch template contains a collision geometry and the run-
time parameter check_collisions_with_matches is true, also collisions between the gripper and all
other detected objects (not limited to max_matches) will be checked. The object on which the grasp
point to be checked is located, is excluded from the collision check.

If collision checking is enabled, only grasps which are collision free will be returned. However, the result

image on top of the CADMatch tab of the Web GUI also shows colliding grasp points in red. The objects
which are considered in the collision check are also visualized with their edges in red.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-sionCheck Parameters (Section 5.3.3.4).

Roboception GmbH

Manual: rc_cube

113 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

5.2.5.6 Parameters
The CADMatch module is called rc_cadmatch in the REST-API and is represented by the CADMatch page
in the Modules tab of the Web GUI (Section 6.1). The user can explore and configure the rc_cadmatch
module’s run-time parameters, e.g. for development and testing, using the Web GUI or the REST-APIinterface (Section 6.3).
Parameter overview
This module offers the following run-time parameters:

Table 5.25: The rc_cadmatchmodule’s run-time parameters

Name Type Min Max Default Description

check_collisions_with_matches bool false true true Whether to check for

collisions between

gripper and detected

matches

edge_max_distance float64 0.5 5.0 2.0 Maximum allowed

distance in pixels be-

tween the template

edges and the de-

tected edges in the

image

edge_sensitivity float64 0.0 1.0 0.5 Sensitivity of the edge

detector

grasp_filter_-
orientation_threshold

float64 0.0 180.0 45.0 Maximum allowed ori-

entation change be-

tween grasp and pre-

ferred orientation in

degrees

load_carrier_crop_distance float64 0.0 0.05 0.005 Safety margin in me-

ters by which the load

carrier inner dimen-

sions are reduced to

define the region of in-

terest for detection

load_carrier_model_tolerance float64 0.003 0.025 0.008 Indicates how much

the estimated load car-

rier dimensions are al-

lowed to differ from

the load carrier model

dimensions in meters

max_matches int32 1 20 10 Maximum number of

matches

min_score float64 0.05 1.0 0.3 Minimum score for

matches

Description of run-time parameters
Each run-time parameter is represented by a row on the Web GUI’s CADMatch page in the Modules tab.
The name in the Web GUI is given in brackets behind the parameter name and the parameters are listed

in the order they appear in the Web GUI:

Roboception GmbH

Manual: rc_cube

114 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

max_matches (Maximum Matches)
is the maximum number of objects to detect.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?max_matches=<value>

min_score (Minimum Score)
is the minimum detection score after refinement. The higher this value, the better 2D edges

and 3D point cloud must match the given template.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?min_score=<value>

edge_sensitivity (Edge Sensitivity)
is the sensitivity of the edge detector. The higher the value of this parameter, the more

edges will be used for pose refinement.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?edge_sensitivity=<value>

edge_max_distance (Maximum Edge Distance)
is the maximum allowed distance in pixels between the template edges and the detected

edges in the image during the refinement step.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?edge_max_distance=<value>

grasp_filter_orientation_threshold (Grasp Orientation Threshold)
is the maximum deviation of the TCP’s z axis at the grasp point from the z axis of the TCP’s

preferred orientation in degrees. Only grasp points which are within this threshold are re-

turned.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?grasp_filter_orientation_

→˓threshold=<value>

check_collisions_with_matches (Check Collisions with Matches)
If this parameter is set to true, and collision checking is enabled by passing a gripper to the

detect_object service call, all grasp points will be checked for collisions between the gripper
and all other detected objects (not limited to max_matches), and only grasp points at which
the gripper would not collide with any other detected object will be returned.

Via the REST-API, this parameter can be set as follows.

Roboception GmbH

Manual: rc_cube

115 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_with_matches=
→˓<value>

load_carrier_model_tolerance

see Parameters of the load carrier functionality (Section 5.2.1.7).
Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?load_carrier_model_tolerance=
→˓<value>

load_carrier_crop_distance

see Parameters of the load carrier functionality (Section 5.2.1.7).
Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?load_carrier_crop_distance=
→˓<value>

5.2.5.7 Status values
The rc_cadmatchmodule reports the following status values:

Table 5.26: The rc_cadmatchmodule’s status values

Name Description

data_acquisition_time Time in seconds required by the last active service to acquire

images

last_timestamp_processed The timestamp of the last processed dataset

load_carrier_detection_time Processing time of the last load carrier detection in seconds

object_detection_time Processing time of the last last object detection in seconds

state The current state of the rc_cadmatch node

The reported state can take one of the following values.

Table 5.27: Possible states of the CADMatch module

State name Description

IDLE The module is idle.

RUNNING The module is running and ready for load carrier detection and object detection.

FATAL A fatal error has occurred.

5.2.5.8 Services
The user can explore and call the rc_cadmatch module’s services, e.g. for development and testing,
using the REST-API interface (Section 6.3) or the rc_cube Web GUI (Section 6.1).
Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Roboception GmbH

Manual: rc_cube

116 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

Table 5.28: Return codes of the CADMatch services

Code Description

0 Success

-1 An invalid argument was provided

-2 An internal error occurred

-3 An internal time-out occurred

-4 Data acquisition took longer than the maximum allowed time of 5.0 seconds

-8 Not applicable, stereo quality must be at least Medium

-9 No valid license for the module

-10 New element could not be added as the maximum storage capacity of load carriers or

regions of interest has been exceeded

10 The maximum storage capacity of load carriers or regions of interest has been reached

11 Existing data was overwritten

100 The requested load carrier was not detected in the scene

101 None of the detected grasps is reachable

102 The detected load carrier is empty

103 All detected grasps are in collision

151 The object template has a continuous symmetry

999 Additional hints for application development

The CADMatch modules offer the following services.

start

Starts the module. If the command is accepted, the module moves to state RUNNING. The
current_state value in the service response may differ from RUNNING if the state transition
is still in process when the service returns.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/start

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module. If the command is accepted, the module moves to state IDLE. The
current_state value in the service response may differ from IDLE if the state transition
is still in process when the service returns.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/stop

This service has no arguments.

The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

117 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

set_region_of_interest

see set_region_of_interest (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_region_of_interest

get_regions_of_interest

see get_regions_of_interest (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_regions_of_interest

delete_regions_of_interest

see delete_regions_of_interest (Section 5.3.2.4).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_regions_of_interest

set_load_carrier

see set_load_carrier (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_load_carrier

get_load_carriers

see get_load_carriers (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_load_carriers

delete_load_carriers

see delete_load_carriers (Section 5.2.1.8).
This service can be called as follows.

Roboception GmbH

Manual: rc_cube

118 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_load_carriers

detect_load_carriers

see detect_load_carriers (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/detect_load_carriers

detect_filling_level

see detect_filling_level (Section 5.2.1.8).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/detect_filling_level

set_preferred_orientation

Persistently stores the preferred orientation of the gripper to compute the reachability of

the grasps, which is used for filtering and sorting the grasps returned by the detect_object
service (see Setting the preferred orientation of the TCP, Section 5.2.5.3).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_preferred_orientation

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

119 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

get_preferred_orientation

Returns the preferred orientation of the gripper to compute the reachability of the grasps,

which is used for filtering and sorting the grasps returned by the detect_object service (seeSetting the preferred orientation of the TCP, Section 5.2.5.3).
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_preferred_orientation

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_grasp

Persistently stores a grasp for the given object template on the rc_cube. All configured grasps
are persistent over firmware updates and rollbacks.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_grasp

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}

(continues on next page)

Roboception GmbH

Manual: rc_cube

120 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

}
}

The definition for the response with corresponding datatypes is:

{
"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Details for the definition of the grasp type are given in Setting of grasp points (Section 5.2.5.2).
set_all_grasps

Replaces the list of grasps for the given object template on the rc_cube.
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_all_grasps

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
],
"template_id": "string"

}
}

The definition for the response with corresponding datatypes is:

{
"name": "set_all_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

(continues on next page)

Roboception GmbH

Manual: rc_cube

121 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

}
}

}

Details for the definition of the grasp type are given in Setting of grasp points (Section 5.2.5.2).
get_grasps

Returns all configured grasps which have the requested grasp_ids and belong to the re-
quested template_ids. If no grasp_ids are provided, all grasps belonging to the requested
template_ids are returned. If no template_ids are provided, all grasps with the requested
grasp_ids are returned. If neither IDs are provided, all configured grasps are returned.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_grasps

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "get_grasps",
"response": {
"grasps": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

122 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

delete_grasps

Deletes all grasps with the requested grasp_ids that belong to the requested template_ids.
If no grasp_ids are provided, all grasps belonging to the requested template_ids are
deleted. The template_ids list must not be empty.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_grasps

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "delete_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_symmetric_grasps

Returns all grasps that are symmetric to the given grasp. The first grasp in the returned list is

the one that was passed with the service call. If the object template does not have an exact

symmetry, only the grasp passed with the service call will be returned. If the object template

has a continuous symmetry (e.g. a cylindrical object), only 12 equally spaced sample grasps

will be returned.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_symmetric_grasps

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH

Manual: rc_cube

123 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
}

}

The definition for the response with corresponding datatypes is:

{
"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Details for the definition of the grasp type are given in Setting of grasp points (Section 5.2.5.2).
detect_object

Triggers the detection of objects as described in Detection of objects (Section 5.2.5.4) based
on an object template.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/detect_object

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"collision_detection": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

124 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

"gripper_id": "string",
"pre_grasp_offset": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"load_carrier_compartment": {
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
}

Required arguments:

pose_frame: see Hand-eye calibration (Section 5.2.5.5).
template_id: the ID of the template to be detected.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 5.2.5.5).
Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be
detected.

load_carrier_compartment: compartment inside the load carrier where
to detect items (see Load carrier compartments, Section 5.2.1.3).

Roboception GmbH

Manual: rc_cube

125 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

region_of_interest_id: if load_carrier_id is set, ID of the 3D region
of interest where to search for the load carriers. Otherwise, ID of the 3D

region of interest where to search for the objects.

collision_detection: see Collision checking within other modules (Section
5.3.3.3).

Response:
The definition for the response with corresponding datatypes is:

{
"name": "detect_object",
"response": {
"grasps": [

{
"id": "string",
"match_uuid": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [
{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

126 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"matches": [
{
"grasp_uuids": [

"string"
],
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"score": "float32",
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

grasps: list of grasps on the detected objects. The grasps are ordered by their
reachability starting with the grasp that can be reached most easily by the robot.

The match_uuid gives the reference to the detected object in matches this grasp
belongs to.

load_carriers: list of detected load carriers.

matches: list of detected objects matching the template. The score indicates how
well the object matches the template. The grasp_uuids refer to the grasps in
grasps which are reachable on this object.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

Roboception GmbH

Manual: rc_cube

127 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

save_parameters

This service saves the currently set parameters persistently. Thereby, the same parameters

will still apply after a reboot of the rc_cube. The node parameters are not persistent over
firmware updates and rollbacks.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/save_parameters

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "save_parameters",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

This service resets all parameters of the module to its default values, as listed in above table.

The reset does not apply to regions of interest and load carriers.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/reset_defaults

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

5.2.5.9 Template Upload
For template upload, download and listing, special REST-API endpoints are provided. Up to 30 templates

can be stored persistently on the rc_cube.
GET /nodes/rc_cadmatch/templates

Get list of all rc_cadmatch templates.

Template request
GET /api/v1/nodes/rc_cadmatch/templates HTTP/1.1

Template response

Roboception GmbH

Manual: rc_cube

128 Rev: 21.04.0

Status: Apr 15, 2021

5.2. Detection modules

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns array of Template)
• 404 Not Found – node not found

Referenced Data Models
• Template (Section 6.3.3)

GET /nodes/rc_cadmatch/templates/{id}
Get a rc_cadmatch template. If the requested content-type is application/octet-stream, the tem-

plate is returned as file.

Template request
GET /api/v1/nodes/rc_cadmatch/templates/<id> HTTP/1.1

Template response
HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters
• id (string) – id of the template (required)

Response Headers
• Content-Type – application/json application/octet-stream

Status Codes
• 200 OK – successful operation (returns Template)
• 404 Not Found – node or template not found

Referenced Data Models
• Template (Section 6.3.3)

PUT /nodes/rc_cadmatch/templates/{id}
Create or update a rc_cadmatch template.

Template request
PUT /api/v1/nodes/rc_cadmatch/templates/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response
Roboception GmbH

Manual: rc_cube

129 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

5.2. Detection modules

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters
• id (string) – id of the template (required)

Form Parameters
• file – template file (required)

Request Headers
• Accept – multipart/form-data application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns Template)
• 400 Bad Request – Template is not valid or max number of templates reached

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-

ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models
• Template (Section 6.3.3)

DELETE /nodes/rc_cadmatch/templates/{id}
Remove a rc_cadmatch template.

Template request
DELETE /api/v1/nodes/rc_cadmatch/templates/<id> HTTP/1.1
Accept: application/json

Parameters
• id (string) – id of the template (required)

Request Headers
• Accept – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-

ule.

• 404 Not Found – node or template not found

Roboception GmbH

Manual: rc_cube

130 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

5.3. Configuration modules

5.3 Configuration modules
The rc_cube provides several configuration modules which enable the user to configure the rc_cube for
specific applications.

The configuration modules are:

• Hand-eye calibration (rc_hand_eye_calibration, Section 5.3.1) enables the user to calibrate
the camera with respect to a robot, either via the Web GUI or the REST-API.

• Region of interest (Section 5.3.2) allows setting and retrieving 2D and 3D regions of interest.
• CollisionCheck (rc_collision_check, Section 5.3.3) allows setting and retrieving grippers and

provides an easy way to check if a gripper is in collision.

• IO and Projector Control (rc_iocontrol, Section 5.3.4) provides control over the rc_visard’s gen-
eral purpose inputs and outputs with special modes for controlling an external random dot

projector.

5.3.1 Hand-eye calibration
For applications, in which the camera is integrated into one or more robot systems, it needs to be

calibrated w.r.t. some robot reference frames. For this purpose, the rc_cube is shipped with an on-
board calibration routine called the hand-eye calibration module. It is a base module which is available
on every rc_cube.
Note: The implemented calibration routine is completely agnostic about the user-defined robot
frame to which the camera is calibrated. It might be a robot’s end-effector (e.g., flange or tool cen-

ter point) or any point on the robot structure. The method’s only requirement is that the pose (i.e.,

translation and rotation) of this robot frame w.r.t. a user-defined external reference frame (e.g.,

world or robot mounting point) is exactly observable by the robot controller and can be reported to

the calibration module.

The Calibration routine (Section 5.3.1.3) itself is an easy-to-use three-step procedure using a calibration
grid which can be obtained from Roboception.

5.3.1.1 Calibration interfaces
The following two interfaces are offered to conduct hand-eye calibration:

1. All services and parameters of this module required to conduct the hand-eye calibration program-matically are exposed by the rc_cube’s REST-API interface (Section 6.3). The respective node name
of this module is rc_hand_eye_calibration and the respective service calls are documented Ser-vices (Section 5.3.1.5).
Note: The described approach requires a network connection between the rc_cube and the
robot controller to pass robot poses from the controller to the rc_cube’s calibration module.

2. For use cases where robot poses cannot be passed programmatically to the rc_cube’s hand-eye
calibration module, the Web GUI’s Hand-Eye Calibration page under the Configuration tab (Section
6.1) offers a guided process to conduct the calibration routinemanually.
Note: During the process, the described approach requires the user to manually enter into
the Web GUI robot poses, which need to be accessed from the respective robot-teaching or

handheld device.

Roboception GmbH

Manual: rc_cube

131 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

5.3.1.2 Camera mounting
As illustrated in Fig. 5.18 and Fig. 5.20, two different use cases w.r.t. to the mounting of the camera

generally have to be considered:

a. The camera ismounted on the robot, i.e., it is mechanically fixed to a robot link (e.g., at its flange
or a flange-mounted tool), and hence moves with the robot.

b. The camera is not mounted on the robot but is fixed to a table or other place in the robot’s vicinity

and remains at a static position w.r.t. the robot.
While the general Calibration routine (Section 5.3.1.3) is very similar in both use cases, the calibration
process’s output, i.e., the resulting calibration transform, will be semantically different, and the fixture

of the calibration grid will also differ.

Calibration with a robot-mounted camera When calibrating a robot-mounted camera with the
robot, the calibration grid has to be secured in a static position w.r.t. the robot, e.g., on a table or

some other fixed-base coordinate system as sketched in Fig. 5.18.

Warning: It is extremely important that the calibration grid does not move during step 2

of the Calibration routine (Section 5.3.1.3). Securely fixing its position to prevent unintended
movements such as those caused by vibrations, moving cables, or the like is therefore strongly

recommended.

The result of the calibration (step 3 of the Calibration routine, Section 5.3.1.3) is a pose Trobot
camera

describing the (previoulsy unknown) relative positional and rotational transformation from thecamera frame into the user-selected robot frame such that
probot = Rrobot

camera
· pcamera + trobot

camera
, (5.3)

where probot = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the robot frame, pcamera is
the same point represented in the camera coordinate frame, andRrobot

camera
as well as trobot

camera
are the

corresponding 3× 3 rotation matrix and 3× 1 translation vector of the pose Trobot
camera

, respectively.

In practice, in the calibration result and in the provided robot poses, the rotation is defined by

Euler angles or as quaternion instead of a rotation matrix (see Pose formats, Section 10.1).

robot

ext

camera

T robot
ext

Tcamera
robot

calibration grid

Fig. 5.18: Important frames and transformations for calibrating a camera that is mounted on a general

robot. The camera is mounted with a fixed relative position to a user-defined robot frame (e.g., flange
or TCP). It is important that the pose Text

robot
of this robot frame w.r.t. a user-defined external reference

frame ext is observable during the calibration routine. The result of the calibration process is the de-
sired calibration transformationTrobot

camera
, i.e., the pose of the camera frame within the user-defined robot

frame.

Roboception GmbH

Manual: rc_cube

132 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

Additional user input is required if the movement of the robot is constrained and the robot can

rotate the Tool Center Point (TCP) only around one axis. This is typically the case for robots with

four Degrees Of Freedom (4DOF) that are often used for palletizing tasks. In this case, the user

must specify which axis of the robot frame is the rotation axis of the TCP. Further, the signed offset
from the TCP to the camera coordinate system along the TCP rotation axis has to be provided. Fig.
5.19 illustrates the situation.

For rc_visard, the camera coordinate system is located in the optical center of the left camera. The
approximate location is given in section Coordinate Frames.

robot

ext

camera

T robot
ext Tcamera

robot

calibration grid

TCP rotation axis

TCP offset

Fig. 5.19: In case of a 4DOF robot, the TCP rotation axis and the offset from the TCP to the camera

coordinate system along the TCP rotation axis must be provided. In the illustrated case, this offset is

negative.

Calibration with a statically-mounted camera In use cases where the camera is positioned statically

w.r.t. the robot, the calibration grid needs to be mounted to the robot as shown for example in

Fig. 5.20 and Fig. 5.21.

Note: The hand-eye calibration module is completely agnostic about the exact mounting and
positioning of the calibration grid w.r.t. the user-defined robot frame. That means, the relative
positioning of the calibration grid to that frame neither needs to be known, nor it is relevant for

the calibration routine, as shown in Fig. 5.21.

Warning: It is extremely important that the calibration grid is attached securely to the robot

such that it does not change its relative position w.r.t. the user-defined robot frame during step
2 of the Calibration routine (Section 5.3.1.3).

In this use case, the result of the calibration (step 3 of the Calibration routine, Section 5.3.1.3) is the
poseText

camera
describing the (previoulsy unknown) relative positional and rotational transformation

between the camera frame and the user-selected external reference frame ext such that
pext = Rext

camera
· pcamera + text

camera
, (5.4)

where pext = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the external reference frameext, pcamera is the same point represented in the camera coordinate frame, and Rext
camera

as well as

text
camera

are the corresponding 3×3 rotation matrix and 3×1 translation vector of the poseText
camera

,

respectively. In practice, in the calibration result and in the provided robot poses, the rotation is

defined by Euler angles or as quaternion instead of a rotation matrix (see Pose formats, Section
10.1).

Roboception GmbH

Manual: rc_cube

133 Rev: 21.04.0

Status: Apr 15, 2021

https://doc.rc-visard.com/latest/en/hardware_spec.html#coordinate-frames

5.3. Configuration modules

robot

ext

camera

T robot
ext Tcamera

ext

calibration

grid

Fig. 5.20: Important frames and transformations for calibrating a statically mounted camera: The latter

is mounted with a fixed position relative to a user-defined external reference frame ext (e.g., the world
coordinate frame or the robot’s mounting point). It is important that the poseText

robot
of the user-definedrobot frame w.r.t. this frame is observable during the calibration routine. The result of the calibration

process is the desired calibration transformation Text
camera

, i.e., the pose of the camera frame in the user-
defined external reference frame ext.

robot

camera

robot

camera

Fig. 5.21: Alternate mounting options for attaching the calibration grid to the robot

Additional user input is required if the movement of the robot is constrained and the robot can

rotate the Tool Center Point (TCP) only around one axis. This is typically the case for robots with

four Degrees Of Freedom (4DOF) that are often used for palletizing tasks. In this case, the user

must specify which axis of the robot frame is the rotation axis of the TCP. Further, the signed offset
from the TCP to the visible surface of the calibration grid along the TCP rotation axis has to be

provided. The grid must be mounted such that the TCP rotation axis is orthogonal to the grid. Fig.

5.22 illustrates the situation.

Roboception GmbH

Manual: rc_cube

134 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

ext

camera

T robot
ext

Tcamera
ext

calibration
grid

robot

TCP rotation axis

TCP offset

Fig. 5.22: In case of a 4DOF robot, the TCP rotation axis and the offset from the TCP to the visible surface

of the grid along the TCP rotation axis must be provided. In the illustrated case, this offset is negative.

5.3.1.3 Calibration routine
The general hand-eye calibration routine consists of three steps, which are illustrated in Fig. 5.23. These

three steps are also represented in the Web GUI’s guided hand-eye-calibration process (Section 6.1).

Set parameters
e.g., grid width, height

1.

Move robot
to new calibration
position

2a.

Calculate calibration
transformation

3.

Send robot pose
to hand-eye calibration
component (filling slots)

2b.
repeat 3x or more

(x,y,z)
(qx,qy,qz,qw)

+

slot_0

(x,y,z)
(qx,qy,qz,qw)

+

slot_1

(x,y,z)
(qx,qy,qz,qw)

+

slot_2

Slots with robot poses and
corresponding camera images

(different views on
calibration grid)

Fig. 5.23: Illustration of the three different steps involved in the hand-eye calibration routine

Step 1: Setting parameters
Before starting the actual calibration routine, the grid and mounting parameters have to be set to the

module. As for the REST-API, the respective parameters are listed in Parameters (Section 5.3.1.4).
Web GUI example: The Web GUI offers an interface for entering these parameters during the first step

of the calibration routine as shown in Fig. 5.24. In addition to grid size and camera mounting, the

Roboception GmbH

Manual: rc_cube

135 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

Web GUI also offers settings for calibrating 4DOF robots. In this case, the rotation axis, as well as

the offset from the TCP to the camera coordinate system (robot-mounted camera) or grid surface

(statically mounted camera) must be given. Finally, the pose format can be chosen, which is used

for setting poses in the upcoming step 2 of the calibration process. It can be set to either XYZABC
for positions and Euler angles, or XYZ+quaternion for positions plus quaternions for representing
rotations. See Pose formats (Section 10.1) for the exact definitions.
Note: The Pose parameter is added to the Web GUI as a convenience option only. For reporting
poses programmatically via REST-API, the XYZ+quaternion format is mandatory.

Fig. 5.24: Defining hand-eye calibration settings via the rc_cube’s Web GUI

Step 2: Selecting and reporting robot calibration positions
In this step (2a.), the user defines several calibration positions for the robot to approach. These positions

must each ensure that the calibration grid is completely visible in the left camera image. Furthermore,

the robot positions need to be selected properly to achieve a variety of different perspectives for the

camera to perceive the calibration grid. Fig. 5.25 shows a schematic recommendation of four different

grid positions which should be recorded from a close and a far point of view, resulting in eight images

for the calibration.

Roboception GmbH

Manual: rc_cube

136 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

Fig. 5.25: Recommended views on the calibration grid during the calibration procedure. In case of a

4DOF robot, other views have to be chosen, which should be as different as possible.

Warning: Calibration quality, i.e., the accuracy of the calculated calibration result, depends on the
calibration-grid views provided. The more diverse the perspectives are, the better is the calibration.

Choosing very similar views, i.e., varying the robot positions only slightly between different repeti-

tions of step 2a., may lead to inaccurate estimation of the desired calibration transformation.

After the robot reaches each calibration position, the corresponding pose Text
robot

of the user-definedrobot frame in the user-defined external reference frame ext needs to be reported to the hand-eye
calibration module (2b.). For this purpose, the module offers different slots to store the reported poses
and the corresponding left camera images. All filled slots will then be used to calculate the desired

calibration transformation between the camera frame and either the user-defined robot frame (robot-
mounted camera) or the user-defined external reference frame ext (static camera).
Note: To successfully calculate the hand-eye calibration transformation, at least three different robot
calibration poses need to be reported and stored in slots. However, to prevent errors induced by

possible inaccurate measurements, at least eight calibration poses are recommended.
To transmit the poses programmatically, the module’s REST-API offers the set_pose service call (seeServices, Section 5.3.1.5).
Web GUI example: After completing the calibration settings in step 1 and clicking Next, the Web GUI

offers eight different slots (Close View 1, Close View 2, etc.) for the user to fill manually with robot
poses. At the very top, a live stream from the camera is shown indicating whether the calibra-

tion grid is currently detected or not. Next to each slot, a figure suggests a respective dedicated

viewpoint on the grid. For each slot, the robot must be operated to achieve the suggested view.

Roboception GmbH

Manual: rc_cube

137 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

Fig. 5.26: First sample image in the hand-eye calibration process for a statically mounted camera

Once the suggested view is achieved, the user-defined robot frame’s pose needs to be entered
manually into the respective text fields, and the corresponding camera image is captured using

the Take Picture to Proceed button.
Note: The user’s acquisition of robot pose data depends on the robot model andmanufacturer
– it might be read from a teaching or handheld device, which is shipped with the robot.

Warning: Please be careful to correctly and accurately enter the values; even small variations
or typos may lead to calibration-process failure.

Roboception GmbH

Manual: rc_cube

138 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

This procedure is repeated eight times in total. Complying to the suggestions to observe the grid

from close and far distance from different viewing angles as sketched in Fig. 5.25, in this example

the following corresponding camera images have been sent to the hand-eye calibration module

with their associated robot pose:

Fig. 5.27: Recorded camera images as input for the calibration procedure

Step 3: Calculating and saving the calibration transformation
The final step in the hand-eye calibration routine consists of issuing the desired calibration transfor-

mation to be computed from the collected poses and camera images. The REST-API offers this func-

tionality via the calibrate service call (see Services, Section 5.3.1.5). Depending on the way the camera
is mounted, this service computes and returns the transformation (i.e., the pose) between the camera
frame and either the user-defined robot frame (robot-mounted camera) or the user-defined external
reference frame ext (statically mounted camera); see Camera mounting (Section 5.3.1.2).
To enable users to judge the quality of the resulting calibration transformation, the module also re-

ports the translational and rotational calibration errors, which are computed from the variance of the

calibration result.

Web GUI example: The Web GUI automatically triggers computation of the calibration result after tak-
ing the last of the eight pictures. The user just needs to click the Next button to proceed to the
result. The user has the possibility to specify or correct settings related to calibration of 4DOF

robots if required. After changing any settings, the recompute button needs to be pressed.

In the example that is shown in Fig. 5.28, 4DOF is turned off and the camera is mounted statically.

The resulting output is the pose of the left camera in the external coordinate system of the robot.

The reported translational error is 0.67 mm and the rotational error is 0.83 deg.

Roboception GmbH

Manual: rc_cube

139 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

Fig. 5.28: Result of the hand-eye calibration process displayed in the Web GUI

5.3.1.4 Parameters
The hand-eye calibration module is called rc_hand_eye_calibration in the REST-API and is represented
by the Hand-Eye Calibration page under the Configuration tab in the Web GUI (Section 6.1). The user can
change the calibration parameters there or use the REST-API interface (Section 6.3).
Parameter overview
This module offers the following run-time parameters:

Roboception GmbH

Manual: rc_cube

140 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

Table 5.29: The rc_hand_eye_calibration module’s run-time pa-
rameters

Name Type Min Max Default Description

grid_height float64 0.0 10.0 0.0 The height of the calibration pattern in

meters

grid_width float64 0.0 10.0 0.0 The width of the calibration pattern in

meters

robot_mounted bool false true true Whether the camera is mounted on the

robot

tcp_offset float64 -10.0 10.0 0.0 Offset from TCP along tcp_rotation_axis

tcp_rotation_axis int32 -1 2 -1 -1 for off, 0 for x, 1 for y, 2 for z

Description of run-time parameters
The parameter descriptions are given with the corresponding Web GUI names in brackets.

grid_width (Grid Width (m))
Width of the calibration grid in meters. The width should be given with a very high accuracy,

preferably with sub-millimeter accuracy.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_width=<value>

grid_height (Grid Height (m))
Height of the calibration grid inmeters. The height should be given with a very high accuracy,

preferably with sub-millimeter accuracy.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_height=<value>

robot_mounted (Camera Mounting)
If set to true, the camera is mounted on the robot. If set to false, the camera is mounted
statically and the calibration grid is mounted on the robot.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?robot_mounted=<value>

tcp_offset (TCP Offset)
The signed offset from the TCP to the camera coordinate system (robot-mounted sensor) or

the visible surface of the calibration grid (statically mounted sensor) along the TCP rotation

axis in meters. This is required if the robot’s movement is constrained and it can rotate its

TCP only around one axis (e.g., 4DOF robot).

Via the REST-API, this parameter can be set as follows.

Roboception GmbH

Manual: rc_cube

141 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_offset=<value>

tcp_rotation_axis (TCP Rotation Axis)
The axis of the robot frame around which the robot can rotate its TCP. 0 is used for X, 1 for Y
and 2 for the Z axis. This is required if the robot’s movement is constrained and it can rotate

its TCP only around one axis (e.g., 4DOF robot). -1 means that the robot can rotate its TCP

around two independent rotation axes. tcp_offset is ignored in this case.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_rotation_axis=
→˓<value>

(Pose)
For convenience, the user can choose in the Web GUI between calibration in XYZABC for-
mat or in XYZ+quaternion format (see Pose formats, Section 10.1). When calibrating using the
REST-API, the calibration result will always be given in XYZ+quaternion.

5.3.1.5 Services
The REST-API service calls offered to programmatically conduct the hand-eye calibration and to store or

restore this module’s parameters are explained below.

save_parameters

With this service call, the current parameter settings of the hand-eye calibration module are

persisted to the rc_cube. That means, these values are applied even after reboot.
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/save_parameters

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "save_parameters",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

restores and applies the default values for this module’s parameters (“factory reset”). Does

not affect the calibration result itself or any of the slots saved during calibration. Only
parameters such as the grid dimensions and the mount type will be reset.

Roboception GmbH

Manual: rc_cube

142 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

Warning: By calling this service, the current parameter settings for this module are

irrecoverably lost.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_defaults

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_calibration

deletes all previously provided poses and corresponding images. The last saved calibration

result is reloaded. This service might be used to (re-)start the hand-eye calibration from

scratch.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_calibration

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "reset_calibration",
"response": {

"message": "string",
"status": "int32",
"success": "bool"

}
}

set_pose

provides a robot pose as calibration pose to the hand-eye calibration routine.

The slot argument is used to assign numbers to the different calibration poses. At each
instant when set_pose is called, an image is recorded. This service call fails if the grid was
undetectable in the current image.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_pose

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

143 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "int32"

}
}

The definition for the response with corresponding datatypes is:

{
"name": "set_pose",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Table 5.30: Return codes of the set_pose service call

status success Description

1 true pose stored successfully

3 true pose stored successfully; collected enough poses for calibration,

i.e., ready to calibrate

4 false calibration grid was not detected, e.g., not fully visible in camera

image

8 false no image data available

12 false given orientation values are invalid

calibrate

calculates and returns the hand-eye calibration transformation with the robot poses con-

figured by the set_pose service. save_calibration must be called to make the calibration
available for other modules via the get_calibration service call and to store it persistently.

Note: For calculating the hand-eye calibration transformation at least three robot cali-
bration poses are required (see set_pose service). However, eight calibration poses are
recommended.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/calibrate

This service has no arguments.

The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

144 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

{
"name": "calibrate",
"response": {

"error": "float64",
"message": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"translation_error_meter": "float64"

}
}

The field error gives the calibration error in pixels which is computed from the transla-
tional error translation_error_meter and the rotational error rotation_error_degree.
This value is only given for compatibility with older versions. The translational and rotational

errors should be preferred.

Table 5.31: Return codes of the calibrate service call

status success Description

0 true calibration successful, returned calibration result

1 false not enough poses to perform calibration

2 false calibration result is invalid, please verify the input data

3 false given calibration grid dimensions are not valid

4 false insufficient rotation, tcp_offset and tcp_rotation_axismust be
specified

5 false sufficient rotation available, tcp_rotation_axismust be set to -1

6 false poses are not distinct enough from each other

set_calibration

sets the hand-eye calibration transformation with arguments of this call. The calibra-

tion transformation is expected in the same format as returned by the calibrate and
get_calibration calls. The given calibration information is also stored persistently on the
sensor by internally calling save_calibration.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_calibration

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

145 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

(continued from previous page)

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool"

}
}

The definition for the response with corresponding datatypes is:

{
"name": "set_calibration",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Table 5.32: Return codes of the set_calibration service call

status success Description

0 true setting the calibration transformation was successful

12 false given orientation values are invalid

save_calibration

persistently saves the result of hand-eye calibration to the rc_cube and overwrites the exist-
ing one. The stored result can be retrieved any time by the get_calibration service.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/save_calibration

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "save_calibration",
"response": {

"message": "string",
"status": "int32",
"success": "bool"

}
}

Roboception GmbH

Manual: rc_cube

146 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

Table 5.33: Return codes of the save_calibration service call

status success Description

0 true calibration saved successfully

1 false could not save calibration file

2 false calibration result is not available

remove_calibration

removes the persistent hand-eye calibration on the rc_cube. After this call the

get_calibration service reports again that no hand-eye calibration is available.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/remove_calibration

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "remove_calibration",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Table 5.34: Return codes of the get_calibration service call

status success Description

0 true removed persistent calibration, device reports as uncalibrated

1 true no persistent calibration found, device reports as uncalibrated

2 false could not remove persistent calibration

get_calibration

returns the hand-eye calibration currently stored on the rc_cube.
This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_calibration

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "get_calibration",
"response": {
"error": "float64",
"message": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH

Manual: rc_cube

147 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

(continued from previous page)

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"translation_error_meter": "float64"

}
}

The field error gives the calibration error in pixels which is computed from the transla-
tional error translation_error_meter and the rotational error rotation_error_degree.
This value is only given for compatibility with older versions. The translational and rotational

errors should be preferred.

Table 5.35: Return codes of the get_calibration service call

status success Description

0 true returned valid calibration pose

2 false calibration result is not available

5.3.2 Region of interest
5.3.2.1 Introduction
The region of interest (ROI) functionality is contained in an internal ROI module and can only be used

through the software modules providing a ROI functionality.

The 3D ROI functionality is provided by the ItemPick and BoxPick (Section 5.2.3), CADMatch (Section 5.2.5)
and LoadCarrier (Section 5.2.1) modules.
The 2D ROI functionality is provided by the SilhouetteMatch (Section 5.2.4), and LoadCarrier (Section 5.2.1)
modules.

5.3.2.2 Region of interest
A region of interest (ROI) defines a volume in space (3D region of interest, region_of_interest), or a
rectangular region in the left camera image (2D region of interest, region_of_interest_2d) which is of
interest for a specific user-application.

A ROI can narrow the volumewhere a load carrier is searched for, or select a volumewhich only contains

items to be detected and/or grasped. Processing times can significantly decrease when using a ROI.

3D regions of interest of the following types (type) are supported:

• BOX, with dimensions box.x, box.y, box.z.

• SPHERE, with radius sphere.radius.

The user can specify the 3D region of interest pose in the camera or the external coordinate system.
External can only be chosen if a Hand-eye calibration (Section 5.3.1) is available. When the rc_visard is
robot mounted, and the region of interest is defined in the external frame, the current robot pose must

be given to every detect service call that uses this region of interest.

Roboception GmbH

Manual: rc_cube

148 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

A 2D ROI is defined as a rectangular part of the left camera image, and can be set via the REST-API inter-face (Section 6.3) or the rc_cube Web GUI (Section 6.1) on the page Regions of Interest in the Configuration
tab. The Web GUI offers an easy-to-use selection tool. Each ROI must have a unique name to address a

specific 2D ROI.

In the REST-API, a 2D ROI is defined by the following values:

• id: Unique name of the region of interest

• offset_x, offset_y: offset in pixels along the x-axis and y-axis from the top-left corner of the
image, respectively

• width, height: width and height in pixels

The rc_cube can persistently store up to 50 different 3D regions of interest and the same number of 2D
regions of interest. The configuration of regions of interest is normally performed offline, during the

set up of the desired application. This can be done via the REST-API interface (Section 6.3) of the module
offering the region of interest functionality, or in the rc_cube Web GUI (Section 6.1) on the page Regionsof Interest in the Configuration tab.
Note: The configured regions of interest are persistent even over firmware updates and rollbacks.

5.3.2.3 Parameters
The ROI module does not have any parameters.

5.3.2.4 Services
The user can explore and call the ROI module’s services, e.g. for development and testing, using

the REST-API interface (Section 6.3) of the module offering the ROI functionality, or the rc_cube WebGUI (Section 6.1) page Regions of Interest under the tab Configuration.
Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Table 5.36: Return codes of the region of interest services

Code Description

0 Success

-1 An invalid argument was provided

-10 New element could not be added as the maximum storage capacity of regions of interest

has been exceeded

10 The maximum storage capacity of regions of interest has been reached

11 An existent persistent model was overwritten by the call to set_region_of_interest or
set_region_of_interest_2d

All software modules providing the ROI functionality offer the following services.

set_region_of_interest

Persistently stores a 3D region of interest on the rc_cube. All configured 3D regions of interest
are persistent over firmware updates and rollbacks.

This service can be called as follows.

Roboception GmbH

Manual: rc_cube

149 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

PUT http://<host>/api/v1/nodes/<module>/services/set_region_of_interest

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest": {
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"sphere": {

"radius": "float64"
},
"type": "string"

}
}

}

Details for the definition of the region_of_interest type are given in Region of inter-est (Section 5.3.2.2).
The definition for the response with corresponding datatypes is:

{
"name": "set_region_of_interest",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest_2d

Persistently stores a 2D region of interest on the rc_cube. All configured 2D regions of interest
are persistent over firmware updates and rollbacks.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<module>/services/set_region_of_interest_2d

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

150 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

{
"args": {

"region_of_interest_2d": {
"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
}

}

Details for the definition of the region_of_interest_2d type are given in Region of inter-est (Section 5.3.2.2).
The definition for the response with corresponding datatypes is:

{
"name": "set_region_of_interest_2d",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest

Returns the configured 3D regions of interest with the requested region_of_interest_ids.
If no region_of_interest_ids are provided, all configured 3D regions of interest are re-
turned.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<module>/services/get_regions_of_interest

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "get_regions_of_interest",
"response": {

"regions_of_interest": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",

(continues on next page)

Roboception GmbH

Manual: rc_cube

151 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

(continued from previous page)

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"sphere": {
"radius": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest_2d

Returns the configured 2D regions of interest with the requested

region_of_interest_2d_ids. If no region_of_interest_2d_ids are provided, all con-
figured 2D regions of interest are returned.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<module>/services/get_regions_of_interest_2d

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_2d_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "get_regions_of_interest_2d",
"response": {
"regions_of_interest": [
{

"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

(continues on next page)

Roboception GmbH

Manual: rc_cube

152 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

(continued from previous page)

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_regions_of_interest

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.
All regions of interest to be deleted must be explicitly stated in region_of_interest_ids.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<module>/services/delete_regions_of_interest

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "delete_regions_of_interest",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_regions_of_interest_2d

Deletes the configured 2D regions of interest with the requested

region_of_interest_2d_ids. All 2D regions of interest to be deleted must be explic-
itly stated in region_of_interest_2d_ids.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/<module>/services/delete_regions_of_interest_2d

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_2d_ids": [
"string"

]

(continues on next page)

Roboception GmbH

Manual: rc_cube

153 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

(continued from previous page)

}
}

The definition for the response with corresponding datatypes is:

{
"name": "delete_regions_of_interest_2d",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

5.3.3 CollisionCheck
5.3.3.1 Introduction
The CollisionCheck module is an optional on-board module of the rc_cube and is licensed with any of
the modules ItemPick, BoxPick, SilhouetteMatch or CADMatch. Otherwise it requires a separate Colli-

sionCheck license (Section 7.5) to be purchased.
The module provides an easy way to check if a gripper is in collision with a load carrier or other de-

tected objects (only in combination with CADMatch, Section 5.2.5, and SilhouetteMatch, Section 5.2.4).
It is integrated with the ItemPick and BoxPick (Section 5.2.3), SilhouetteMatch (Section 5.2.4) and CAD-Match (Section 5.2.5) modules, but can be used as standalone product.

Warning: Collisions are checked only between the load carrier and the gripper, not the robot it-
self, the flange, other objects or the item located in the robot gripper. Only in combination withCADMatch (Section 5.2.5) and SilhouetteMatch (Section 5.2.4), and only in case the selected template
contains a collision geometry and check_collisions_with_matches is enabled in the respective de-
tection module, also collisions between the gripper and other detected objects are checked. Colli-
sions with objects that cannot be detected will not be checked.

5.3.3.2 Setting a gripper
The gripper is a collision geometry used to determine whether the grasp is in collision with the load

carrier. The gripper consists of up to 15 elements connected to each other.

At this point, the gripper can be built of elements of the following types:

• BOX, with dimensions box.x, box.y, box.z.

• CYLINDER, with radius cylinder.radius and height cylinder.height.

Additionally, for each gripper the flange radius, and information about the Tool Center Point (TCP) have

to be defined.

The configuration of the gripper is normally performed offline during the setup of the desired applica-

tion. This can be done via the REST-API interface (Section 6.3) or the rc_cube Web GUI (Section 6.1).
Robot flange radius
Collisions are checked only with the gripper, the robot body is not considered. As a safety feature,

to prevent collisions between the load carrier and the robot, all grasps having any part of the robot’s

Roboception GmbH

Manual: rc_cube

154 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

flange inside the load carrier can be designated as colliding (see Fig. 5.29). This check is based on

the defined gripper geometry and the flange radius value. It is optional to use this functionality, and

it can be turned on and off with the run-time parameter check_flange as described in Parameteroverview (Section 5.3.3.4).

A B

Fig. 5.29: Case A would be marked as collision only if check_flange is true, because the robot’s flange
(red) is inside the load carrier. Case B is collision free independent of check_flange.

Creating a gripper via the REST-API
When creating a gripper via the REST-API interface (Section 6.3), each element of the gripper has a parent
element, which defines how they are connected. The gripper is always built in the direction from the

robot flange to the TCP, and at least one elementmust have ‘flange’ as parent. The elements’ IDsmust be

unique and must not be ‘tcp’ or ‘flange’. The pose of the child element has to be given in the coordinate

frame of the parent element. In the REST-API representation, the coordinate frame of an element is

always in its geometric center. Accordingly, for a child element to be exactly below the parent element,

the position of the child element must be computed from the heights of both parent and child element

(see Fig. 5.30).

Pcyl

Pbox

hbox

hcyl

Pdiff = (0, 0, (hcyl+hbox)/2)

Pdiff

Fig. 5.30: Reference frames for gripper creation via the REST-API

The reference frame for the first element for the gripper creation is always the center of the robot’s

flange with the z axis pointing outwards. Via the REST-API it is possible to create a gripper with a tree

structure, corresponding to multiple elements having the same parent element, as long as they are all

connected.

Creating a gripper in the Web GUI
The tab CollisionCheck on the rc_cube Web GUI (Section 6.1) offers a simplified interface to create grip-
pers. It is possible to select the type, the size, as well as the position of each element. In the Web

Roboception GmbH

Manual: rc_cube

155 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

GUI representation the position of each element originates from the bottom of the parent element.

Therefore, a child element with position (0, 0, 0) will always be placed exactly below its parent element,

irrespective of the elements’ heights. Grippers which have a tree structure or which have rotated ele-

ments cannot be created via the Web GUI.

Calculated TCP position
After gripper creation via the set_gripper service call, the TCP position in the flange coordinate system
is calculated and returned as tcp_pose_flange. It is important to check if this value is the same as the
robot’s true TCP position.

Creating rotationally asymmetric grippers
For grippers which are not rotationally symmetric around the z axis, it is crucial to ensure that the grip-

per is properly mounted, so that the representation stored in the CollisionCheck module corresponds

to reality.

5.3.3.3 Collision checking
Stand-alone collision checking
The check_collisions service call triggers collision checking between the chosen gripper and the pro-
vided load carriers for each of the provided grasps. Checking collisions with other objects is not possible

with the stand-alone check_collisions service. The CollisionCheck module checks if the chosen grip-
per is in collision with at least one of the load carriers, when the TCP of the gripper is positioned in the

grasp position. It is possible to check the collision with multiple load carriers simultaneously. The grasps

which are in collision with any of the defined load carriers will be returned as colliding.

The pre_grasp_offset can be used for additional collision checking. The pre-grasp offset 𝑃𝑜𝑓𝑓 is the

offset between the grasp point 𝑃𝑔𝑟𝑎𝑠𝑝 and the pre-grasp position 𝑃𝑝𝑟𝑒 in the grasp’s coordinate frame

(see Fig. 5.31). If the pre-grasp offset is defined, the grasp will be detected as colliding if the gripper is in

collision at any point during motion from the pre-grasp position to the grasp position (assuming a linear

movement).

y

z

x

Ppre

Pgrasp
y

z
x

Poff=Pgrasp-Ppre

Fig. 5.31: Illustration of the pre-grasp offset parameter for collision checking. In this case, the pre-grasp

position as well as the grasp position are collision free. However, the trajectory between these poses

would have collisions. Thus, this grasp pose would be marked as colliding.

Collision checking within other modules
Collision checking is integrated in the following modules’ services:

Roboception GmbH

Manual: rc_cube

156 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

• ItemPick and BoxPick (Section 5.2.3): compute_grasps (see compute_grasps for ItemPick, Section
5.2.3.7 and compute_grasps for BoxPick, Section 5.2.3.7)

• SilhouetteMatch (Section 5.2.4): detect_object (see detect_object, Section 5.2.4.10)
• CADMatch (Section 5.2.5): detect_object (see detect_object, Section 5.2.5.8)

Each of these services can take a collision_detection argument consisting of the gripper_id of the
gripper and optionally the pre_grasp_offset as described in the previous section Stand-alone collisionchecking (Section 5.3.3.3). When the collision_detection argument is given, these services only return
the grasps at which the gripper is not in collision with the load carrier detected by these services. For

this, a load carrier ID has to be provided to these services as well. Only for CADMatch (Section 5.2.5) andSilhouetteMatch (Section 5.2.4), and only in case the selected template contains a collision geometry and
check_collisions_with_matches is enabled in the respective detection module, grasp points at which
the gripper would be in collision with other detected objects are also rejected. The object on which the
grasp point to be checked is located, is excluded from the collision check.

Warning: Collisions are checked only between the load carrier and the gripper, not the robot it-
self, the flange, other objects or the item located in the robot gripper. Only in combination withCADMatch (Section 5.2.5) and SilhouetteMatch (Section 5.2.4), and only in case the selected template
contains a collision geometry and check_collisions_with_matches is enabled in the respective de-
tection module, also collisions between the gripper and other detected objects are checked. Colli-
sions with objects that cannot be detected will not be checked.

The collision-check results are affected by run-time parameters, which are listed and explained further

below.

5.3.3.4 Parameters
The CollisionCheck module is called rc_collision_check in the REST-API and is represented by theCollisionCheck page in the Configuration tab of the Web GUI (Section 6.1). The user can explore and
configure the rc_collision_check module’s run-time parameters, e.g. for development and testing,
using the Web GUI or the REST-API interface (Section 6.3).
Parameter overview
This module offers the following run-time parameters:

Table 5.37: The rc_collision_check module’s run-time parame-
ters

Name Type Min Max Default Description

check_bottom bool false true true Check collisions with the bottom of the

load carrier

check_flange bool false true true Position is in collision if robot flange is

inside the load carrier

collision_dist float64 0.0 0.1 0.01 Minimal distance in meters between

any part of the gripper and any of the

collision geometries for a grasp to be

considered collision free.

Description of run-time parameters
Each run-time parameter is represented by a row on the Web GUI’s Module tab. The name in the Web

GUI is given in brackets behind the parameter name:

Roboception GmbH

Manual: rc_cube

157 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

collision_dist (Collision Distance)
Minimal distance in meters between any part of the gripper and any of the collision geome-

tries (load carrier and/or detected objects) for a grasp to be considered collision free.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?collision_dist=<value>

check_flange (Check Flange)
Performs an additional safety check as described in Robot flange radius (Section 5.3.3.2). If
this parameter is set, all positions in which any part of the robot’s flange is inside the load

carrier are marked as colliding.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_flange=<value>

check_bottom (Check Bottom)
When this check is enabled the collisions will be checked not only with the side walls of the

load carrier but also with its bottom. It might be necessary to disable this check if the TCP is

inside the collision geometry (e.g. is defined inside a suction cup).

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_bottom=<value>

5.3.3.5 Status values
The rc_collision_checkmodule reports the following status values:

Table 5.38: The rc_collision_checkmodule status values

Name Description

last_evaluated_grasps Number of evaluated grasps

last_collision_free_grasps Number of collision-free grasps

5.3.3.6 Services
The user can explore and call the rc_collision_check module’s services, e.g. for development and
testing, using REST-API interface (Section 6.3) or the rc_cube Web GUI (Section 6.1).
Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Roboception GmbH

Manual: rc_cube

158 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

Table 5.39: Return codes of the CollisionCheck services

Code Description

0 Success

-1 An invalid argument was provided

-7 Data could not be read or written to persistent storage

-9 No valid license for the module

-10 New gripper could not be added as the maximum storage capacity of grippers has been

exceeded

10 The maximum storage capacity of grippers has been reached

11 Existing gripper was overwritten

The CollisionCheck module offers the following services.

set_gripper

Persistently stores a gripper on the rc_cube. All configured grippers are persistent over
firmware updates and rollbacks.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/set_gripper

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"elements": [
{
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"cylinder": {

"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",

(continues on next page)

Roboception GmbH

Manual: rc_cube

159 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

(continued from previous page)

"tcp_parent_id": "string",
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Required arguments:

elements: list of geometric elements for the gripper. Each element must
be of type ‘CYLINDER’ or ‘BOX’ with the corresponding dimensions in the
cylinder or box field. The pose of each element must be given in the
coordinate frame of the parent element (see Setting a gripper (Section
5.3.3.2) for an explanation of the coordinate frames). The element’s id
must be unique and must not be ‘tcp’ or ‘flange’. The parent_id is the ID
of the parent element. It can either be ‘flange’ or it must correspond to

another element in list.

flange_radius: radius of the flange used in case the check_flange run-
time parameter is active.

id: unique name of the gripper

tcp_parent_id: ID of the element on which the TCP is defined

tcp_pose_parent: The pose of the TCP with respect to the coordinate
frame of the element specified in tcp_parent_id.

Response:
The definition for the response with corresponding datatypes is:

{
"name": "set_gripper",
"response": {
"gripper": {
"elements": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

160 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

(continued from previous page)

"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_flange": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

gripper: returns the gripper as defined in the request with an additional field
tcp_pose_flange. This gives the coordinates of the TCP in the flange coordinate
frame for comparison with the true settings of the robot’s TCP.

return_code: holds possible warnings or error codes and messages.

get_grippers

Returns the configured grippers with the requested gripper_ids. If no gripper_ids are
provided, all configured grippers are returned.

Roboception GmbH

Manual: rc_cube

161 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/get_grippers

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"gripper_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "get_grippers",
"response": {
"grippers": [
{

"elements": [
{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_flange": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

162 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

(continued from previous page)

"z": "float64"
}

},
"tcp_pose_parent": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_grippers

Deletes the configured grippers with the requested gripper_ids. All grippers to be deleted
must be explicitly stated in gripper_ids.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/delete_grippers

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"gripper_ids": [
"string"

]
}

}

The definition for the response with corresponding datatypes is:

{
"name": "delete_grippers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

163 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

check_collisions

Triggers a collision check between a gripper and a load carrier.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/check_collisions

Request:
The definition for the request arguments with corresponding datatypes is:

{
"args": {
"grasps": [

{
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"gripper_id": "string",
"load_carriers": [
{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

164 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

(continued from previous page)

"y": "float64"
}

}
],
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

Required arguments:

grasps: list of grasps that should be checked.

load_carriers: list of load carriers against which the collision should be
checked. The fields of the load carrier definition are described in Detectionof load carriers (Section 5.2.1.4). The position frame of the grasps and load
carriers has to be the same.

gripper_id: the id of the gripper that is used to check the collisions. The
gripper has to be configured beforehand.

Optional arguments:

pre_grasp_offset: the offset in meters from the grasp position to the
pre-grasp position in the grasp frame. If this argument is set, the collisions

will not only be checked in the grasp point, but also on the path from the

pre-grasp position to the grasp position (assuming a linear movement).

Response:
The definition for the response with corresponding datatypes is:

{
"name": "check_collisions",
"response": {
"colliding_grasps": [
{
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"collision_free_grasps": [
{
"pose": {

"orientation": {
"w": "float64",
"x": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

165 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

(continued from previous page)

"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

colliding_grasps: list of grasps in collision with one or more load carriers.

collision_free_grasps: list of collision-free grasps.

return_code: holds possible warnings or error codes and messages.

save_parameters

This service saves the currently set parameters persistently. Thereby, the same parameters

will still apply after a reboot of the rc_cube. The node parameters are not persistent over
firmware updates and rollbacks.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/save_parameters

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "save_parameters",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

This service resets all parameters of the module to its default values, as listed in above table.

The reset does not apply to grippers.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/reset_defaults

Roboception GmbH

Manual: rc_cube

166 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

5.3.4 IO and Projector Control
The IOControl module is an optional on-board module of the rc_visard and requires a separate IOCon-
trol license (Section 7.5) to be purchased. This license is included in every rc_visard purchased after
01.07.2020.

The IOControl module allows reading the status of the general purpose digital inputs and controlling

the digital general purpose outputs (GPIOs) of the rc_visard. The outputs can be set to LOW or HIGH, or
configured to be HIGH for the exposure time of every image or every second image.

The purpose of the IOControl module is the control of an external light source or a projector, which is

connected to one of the rc_visard’s GPIOs to be synchronized by the image acquisition trigger. In case
a pattern projector is used to improve stereo matching, the intensity images also show the projected

pattern, whichmight be a disadvantage for image processing tasks that are based on the intensity image

(e.g. edge detection). For this reason, the IOControl module allows setting GPIO outputs to HIGH for the

exposure time of every second image, so that intensity images without the projected pattern are also

available.

5.3.4.1 Parameters
The IOControl module is called rc_iocontrol in the REST-API and is represented by the IOControl page
in the Configuration tab of the Web GUI (Section 6.1). The user can change the parameters via the
Web GUI, the REST-API interface (Section 6.3), or via GigE Vision using the DigitalIOControl parameters
LineSelector and LineSource (Category: DigitalIOControl, Section 6.2.3.4).
Parameter overview
This module offers the following run-time parameters:

Table 5.40: The rc_iocontrolmodule’s run-time parameters

Name Type Min Max Default Description

out1_mode string - - Low Out1 mode: [Low, High, ExposureActive,

ExposureAlternateActive]

out2_mode string - - Low Out2 mode: [Low, High, ExposureActive,

ExposureAlternateActive]

Description of run-time parameters
out1_mode and out2_mode (Out1 and Out2)

The output modes for GPIO Out 1 and Out 2 can be set individually:

Roboception GmbH

Manual: rc_cube

167 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

Low sets the ouput permanently to LOW. This is the factory default.

High sets the output permanently to HIGH.

ExposureActive sets the output to HIGH for the exposure time of every image.

ExposureAlternateActive sets the output to HIGH for the exposure time of every second
image.

Via the REST-API, this parameter can be set as follows.

PUT http://<host>/api/v1/nodes/rc_iocontrol/parameters?<out1_mode|out2_mode>=<value>

Note: The parameters can only be changed if the IOControl license is available on the rc_cube. Oth-
erwise, the parameters will stay at their factory defaults, i.e. out1_mode = Low and out2_mode = Low.

Fig. 5.32 shows which images are used for stereo matching and transmission via GigE Vision in

ExposureActivemode with a user-defined frame rate of 8 Hz.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 5.32: Example of using the ExposureActivemode for GPIO Out 1 with a user-defined frame rate of
8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is HIGH for the exposure time of every

image. A disparity image is computed for camera images that are sent out via GigE Vision according to

the user-defined frame rate.

The mode ExposureAlternateActive is meant to be used when an external random dot projector is
connected to the rc_visard’s GPIO Out 1. When setting Out 1 to ExposureAlternateActive, the stereomatching (Section 5.1.2) module only uses images with GPIO Out 1 being HIGH, i.e. projector is on. The
maximum frame rate that is used for stereo matching is therefore half of the frame rate configured

by the user (see FPS, Section 5.1.1.4). All modules which make use of the intensity image, like TagDe-tect (Section 5.2.2) and ItemPick (Section 5.2.3), use the intensity images with GPIO Out 1 being LOW, i.e.
projector is off. Fig. 5.33 shows an example.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 5.33: Example of using the ExposureAlternateActive mode for GPIO Out 1 with a user-defined
frame rate of 8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is HIGH for the exposure

time of every second image. A disparity image is computed for images where Out 1 is HIGH and that are

sent out via GigE Vision according to the user-defined frame rate. In ExposureAlternateActive mode,
intensity images are always transmitted pairwise: one with GPIO Out 1 HIGH, for which a disparity image

might be available, and one with GPIO Out 1 LOW.

Note: In ExposureAlternateActivemode, an intensity image with GPIO Out 1 being HIGH (i.e. with
projection) is always 40 ms away from an intensity image with Out 1 being LOW (i.e. without pro-

jection), regardless of the user-defined frame rate. This needs to be considered when synchronizing

disparity images and camera images without projection in this special mode.

The functionality can also be controlled by the DigitalIOControl parameters of the GenICam interface

(Category: DigitalIOControl, Section 6.2.3.4).
Roboception GmbH

Manual: rc_cube

168 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

5.3.4.2 Services
Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion.

The IOControl module offers the following services.

get_io_values

This service call retrieves the current state of the rc_visard’s general purpose inputs and out-
puts (GPIOs).

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/get_io_values

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "get_io_values",
"response": {
"in1": "bool",
"in2": "bool",
"out1": "bool",
"out2": "bool",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

The returned timestamp is the time of measurement.

return_code holds possible warnings or error codes and messages. Possible return_code
values are shown below.

Code Description

0 Success

-2 Internal error

-9 License for IOControl is not available

save_parameters

With this service call, the module’s current parameter settings are persisted to the rc_cube.
That means, these values are applied even after reboot.

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/save_parameters

Roboception GmbH

Manual: rc_cube

169 Rev: 21.04.0

Status: Apr 15, 2021

5.3. Configuration modules

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "save_parameters",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/reset_defaults

This service has no arguments.

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Warning: By calling this service, the current parameter settings for the IOControl mod-
ule are irrecoverably lost.

Roboception GmbH

Manual: rc_cube

170 Rev: 21.04.0

Status: Apr 15, 2021

6 Interfaces
The following interfaces are provided for configuring and obtaining data from the rc_cube:

• Web GUI (Section 6.1)
Easy-to-use graphical interface to configure the rc_cube, do calibrations, view live images,
do service calls, visualize results, etc.

• GigE Vision 2.0/GenICam (Section 6.2)
Images and camera related configuration.

• REST API (Section 6.3)
API to configure the rc_cube, query status information, do service calls, etc.

• Ethernet KRL Interface (EKI) (Section 6.4)
API to configure the rc_cube and do service calls from KUKA KSS robots.

• gRPC image stream (Section 6.5)
Stream synchronized image sets via gRPC.

• Time synchronization (Section 6.6)
Time synchronization between the rc_cube and the application host.

6.1 Web GUI
The rc_cube’s Web GUI can be used to test, calibrate, and configure the device.

6.1.1 Accessing the Web GUI
The Web GUI can be accessed from any web browser, such as Firefox, Google Chrome, or Microsoft

Edge, via the rc_cube’s IP address. The easiest way to access the Web GUI is to simply double click on the
desired device using the rcdiscover-gui tool as explained in Discovery of rc_cube devices (Section 3.4).
Alternatively, some network environments automatically configure the unique host name of the rc_cube
in their Domain Name Server (DNS). In this case, the Web GUI can also be accessed directly using theURL http://<host-name> by replacing <host-name> with the device’s host name.
For Linux and Mac operating systems, this even works without DNS via the multicast Domain Name

System (mDNS), which is automatically used if .local is appended to the host name. Thus, the URL
simply becomes http://<host-name>.local.

6.1.1.1 Access to the rc_visardWeb GUI
For troubleshooting, users can also directly access the Web GUI of the rc_visard device that is connected
to the rc_cube. It is available at port 2342 of the rc_cube, and hence at the URL http://<host>:2342
where <host> is the IP address or host name of the rc_cube that the rc_visard is connected to.
Roboception GmbH

Manual: rc_cube

171 Rev: 21.04.0

Status: Apr 15, 2021

6.1. Web GUI

By this means, users have access to rc_visard’s device information or log files.
Note: If a computer screen is directly connected to the rc_cube, it shows the Web GUI with a small
additional menu from which the rc_visard’s Web GUI can be accessed as well.

6.1.2 Exploring the Web GUI
The Web GUI’s overview page gives the most important information about the device and the software

modules.

Fig. 6.1: Overview page of the rc_cube’s Web GUI

The page’s top row permits access to the individual pages of the rc_cube’s Web GUI:
Camera shows a live stream of the left and right rectified camera images. The frame rate can be re-

duced to save bandwidth when streaming to a GigE Vision® client. Furthermore, exposure can be

set manually or automatically. See Parameters (Section 5.1.1.4) for more information.

Roboception GmbH

Manual: rc_cube

172 Rev: 21.04.0

Status: Apr 15, 2021

6.1. Web GUI

Depth Image shows a live stream of the left rectified, depth, and confidence images. The page contains
various settings for depth-image computation and filtering. See Parameters (Section 5.1.2.5) for
more information.

Modules gives access to the detection modules of the rc_cube (see Detection modules, Section 5.2).
Configuration gives access to the configuration modules of the rc_cube (see Configuration modules, Sec-

tion 5.3).

Logs permits access to the log files on the rc_cube. The log files are typically checked if errors are
suspected.

System gives access to general settings and device information, and permits the firmware or the license

file to be updated.

Note: Changed parameters are not persistent and will be lost when restarting the rc_cube unless
they are saved by pressing the Save button before leaving the corresponding page.
Note: Further information on all parameters in the Web GUI can be obtained by pressing the Info
button next to each parameter.

6.1.3 Downloading stereo camera images
The Web GUI provides an easy way to download a snapshot of the current scene as a .tar.gz file by

clicking on the camera icon below the image live streams on the Camera tab. This snapshot contains:
• the rectified left and right camera images in full resolution as .png files,

• a camera parameter file containing the camera matrix, image dimensions, exposure time, gain

value and the stereo baseline,

• the current IMU readings as imu.csv file,

• a nodes.json file containing information about all nodes running on the rc_cube,
• a system_info.json file containing system information about the rc_cube.

The filenames contain the timestamps.

6.1.4 Downloading depth images and point clouds
The Web GUI provides an easy way to download the depth data of the current scene as a .tar.gz file

by clicking on the camera icon below the image live streams on the Depth image tab. This snapshot
contains:

• the rectified left and right camera images in full resolution as .png files,

• an image parameter file corresponding to the left image containing the camera matrix, image

dimensions, exposure time, gain value and the stereo baseline,

• the disparity, error and confidence images in the resolution corresponding to the currently chosen

quality as .png files,

• a disparity parameter file corrsponding to the disparity image containing the camera matrix, im-

age dimensions, exposure time, gain value and the stereo baseline, and information about the

disparity values (i.e. invalid values, scale, offset),

• a point cloud in the current depth quality (resolution) as .ply file,

• the current IMU readings as imu.csv file,

• a nodes.json file containing information about all nodes running on the rc_cube,
• a system_info.json file containing system information about the rc_cube.

Roboception GmbH

Manual: rc_cube

173 Rev: 21.04.0

Status: Apr 15, 2021

6.2. GigE Vision 2.0/GenICam image interface

The filenames contain the timestamps.

Note: Downloading a depth snapshot will trigger an acquisition in the same way as clicking on the
“Acquire” button on the Depth Image page of the Web GUI, and, thus, might affect running applica-
tions.

6.2 GigE Vision 2.0/GenICam image interface
Gigabit Ethernet for Machine Vision (“GigE Vision®” for short) is an industrial camera interface standard

based on UDP/IP (see http://www.gigevision.com). The rc_cube is a GigE Vision® version 2.0 device and
is hence compatible with all GigE Vision® 2.0 compliant frameworks and libraries.

GigE Vision® uses GenICam to describe the camera/device features. For more information about thisGeneric Interface for Cameras see http://www.genicam.org/.
Via this interface the rc_cube provides features such as

• discovery,

• IP configuration,

• configuration of camera related parameters,

• image grabbing, and

• time synchronization via IEEE 1588-2008 PrecisionTimeProtocol (PTPv2).

Note: The rc_cube supports jumbo frames of up to 9000 bytes. Setting an MTU of 9000 on your GigE
Vision client side is recommended for best performance.

Note: Roboception provides tools and a C++ API with examples for discovery, configuration, and im-
age streaming via the GigE Vision/GenICam interface. See http://www.roboception.com/download.

6.2.1 GigE Vision ports
GigE Vision is a UDP based protocol. On the rc_cube the UDP ports are fixed and known:

• UDP port 3956: GigE Vision Control Protocol (GVCP). Used for discovery, control and configuration.

• UDP port 50010: Stream channel source port for GigE Vision Stream Protocol (GVSP) used for

image streaming.

6.2.2 Important GenICam parameters
The following list gives an overview of the relevant GenICam features of the rc_cube that can be read
and/or changed via the GenICam interface. In addition to the standard parameters, which are defined

in the Standard Feature Naming Convention (SFNC, see http://www.emva.org/standards-technology/

genicam/genicam-downloads/), rc_cube devices also offer custom parameters that account for special
features of the Stereo camera (Section 5.1.1) and the Stereo matching (Section 5.1.2) module.

6.2.3 Important standard GenICam features
6.2.3.1 Category: ImageFormatControl
ComponentSelector

• type: Enumeration, one of Intensity, IntensityCombined, Disparity, Confidence, or Error

Roboception GmbH

Manual: rc_cube

174 Rev: 21.04.0

Status: Apr 15, 2021

http://www.gigevision.com
http://www.genicam.org/
http://www.roboception.com/download
http://www.emva.org/standards-technology/genicam/genicam-downloads/
http://www.emva.org/standards-technology/genicam/genicam-downloads/

6.2. GigE Vision 2.0/GenICam image interface

• default: -

• description: Allows the user to select one of the five image streams for configuration (seeProvided image streams, Section 6.2.6).
ComponentIDValue (read-only)

• type: Integer

• description: The ID of the image stream selected by the ComponentSelector.

ComponentEnable

• type: Boolean

• default: -

• description: If set to true, it enables the image stream selected by ComponentSelector; oth-
erwise, it disables the stream. Using ComponentSelector and ComponentEnable, individual
image streams can be switched on and off.

Width (read-only)
• type: Integer

• description: Image width in pixel of image stream that is currently selected by

ComponentSelector.

Height (read-only)
• type: Integer

• description: Image height in pixel of image stream that is currently selected by

ComponentSelector.

WidthMax (read-only)
• type: Integer

• description: Maximum width of an image, which is always 1280 pixels.

HeightMax (read-only)
• type: Integer

• description: Maximum height of an image in the streams. This is always 1920 pixels due

to the stacked left and right images in the IntensityCombined stream (see Provided imagestreams, Section 6.2.6).
PixelFormat

• type: Enumeration, one of Mono8, YCbCr411_8 (color cameras only), Coord3D_C16,
Confidence8 and Error8

• description: Pixel format of the selected component. The enumeration only permits to

choose the format among the possibly formats for the selected component. For a color

camera, Mono8 or YCbCr411_8 can be chosen for the Intensity and IntensityCombined com-
ponent.

6.2.3.2 Category: AcquisitionControl
AcquisitionFrameRate

• type: Float, ranges from 1 Hz to 25 Hz

• default: 25 Hz

• description: Frame rate of the camera (FPS, Section 5.1.1.4).
ExposureAuto

Roboception GmbH

Manual: rc_cube

175 Rev: 21.04.0

Status: Apr 15, 2021

6.2. GigE Vision 2.0/GenICam image interface

• type: Enumeration, one of Continuous, Out1High, AdaptiveOut1 or Off

• default: Continuous

• description: Can be set to Off for manual exposure mode, to Continuous, Out1High or
AdaptiveOut1 for auto exposure (Section 5.1.1.4). The value Continuous maps to the valueNormal of the exp_auto_mode (auto exposure mode, Section 5.1.1.4) and Out1High and
AdaptiveOut1 to the modes of the same name.

ExposureTime

• type: Float, ranges from 66 µs to 18000 µs

• default: 5000 µs

• description: The cameras’ exposure time in microseconds for the manual exposure mode

(Exposure, Section 5.1.1.4).
6.2.3.3 Category: AnalogControl
GainSelector (read-only)

• type: Enumeration, is always All

• default: All

• description: The rc_cube currently supports only one overall gain setting.
Gain

• type: Float, ranges from 0 dB to 18 dB

• default: 0 dB

• description: The cameras’ gain value in decibel that is used in manual exposure mode (Gain,
Section 5.1.1.4).

BalanceWhiteAuto (color cameras only)
• type: Enumeration, one of Continuous or Off

• default: Continuous

• description: Can be set to Off for manual white balancing mode or to Continuous for auto
white balancing. This feature is only available on color cameras (wb_auto, Section 5.1.1.4).

BalanceRatioSelector (color cameras only)
• type: Enumeration, one of Red or Blue

• default: Red

• description: Selects ratio to be modified by BalanceRatio. Redmeans red to green ratio and
Bluemeans blue to green ratio. This feature is only available on color cameras.

BalanceRatio (color cameras only)
• type: Float, ranges from 0.125 to 8

• default: 1.2 if Red and 2.4 if Blue is selected in BalanceRatioSelector

• description: Weighting of red or blue to green color channel. This feature is only available on

color cameras (wb_ratio, Section 5.1.1.4).

Roboception GmbH

Manual: rc_cube

176 Rev: 21.04.0

Status: Apr 15, 2021

6.2. GigE Vision 2.0/GenICam image interface

6.2.3.4 Category: DigitalIOControl
Note: If IOControl license is not available, then the outputs will be configured according to the factory
defaults and cannot be changed. The inputs will always return the logic value false, regardless of the

signals on the physical inputs.

LineSelector

• type: Enumeration, one of Out1, Out2, In1 or In2

• default: Out1

• description: Selects the input or output line for getting the current status or setting the

source.

LineStatus (read-only)
• type: Boolean

• description: Current status of the line selected by LineSelector.

LineStatusAll (read-only)
• type: Integer

• description: Current status of GPIO inputs and outputs represented in the lowest four bits.

Table 6.1: Meaning of bits of LineStatusAll field.

Bit 4 3 2 1

GPIO In 2 In 1 Out 2 Out 1

LineSource (read-only if IOControl module is not licensed)
• type: Enumeration, one of ExposureActive, ExposureAlternateActive, Low or High

• default: Low

• description: Mode for output line selected by LineSelector as described in the IO-

Control module (out1_mode and out2_mode, Section 5.3.4.1). See also parameter

AcquisitionAlternateFilter for filtering images in ExposureAlternateActivemode.

6.2.3.5 Category: TransportLayerControl / PtpControl
PtpEnable

• type: Boolean

• default: false

• description: Switches PTP synchronization on and off.

6.2.3.6 Category: Scan3dControl
Scan3dDistanceUnit (read-only)

• type: Enumeration, is always Pixel

• description: Unit for the disparity measurements, which is always Pixel.

Scan3dOutputMode (read-only)
• type: Enumeration, is always DisparityC

• description: Mode for the depth measurements, which is always DisparityC.

Scan3dFocalLength (read-only)
Roboception GmbH

Manual: rc_cube

177 Rev: 21.04.0

Status: Apr 15, 2021

6.2. GigE Vision 2.0/GenICam image interface

• type: Float

• description: Focal length in pixel of image stream selected by ComponentSelector. In case of
the component Disparity, Confidence and Error, the value also depends on the resolution
that is implicitly selected by DepthQuality.

Scan3dBaseline (read-only)
• type: Float

• description: Baseline of the stereo camera in meters.

Scan3dPrinciplePointU (read-only)
• type: Float

• description: Horizontal location of the principle point in pixel of image stream selected by

ComponentSelector. In case of the component Disparity, Confidence and Error, the value
also depends on the resolution that is implicitly selected by DepthQuality.

Scan3dPrinciplePointV (read-only)
• type: Float

• description: Vertical location of the principle point in pixel of image stream selected by

ComponentSelector. In case of the component Disparity, Confidence and Error, the value
also depends on the resolution that is implicitly selected by DepthQuality.

Scan3dCoordinateScale (read-only)
• type: Float

• description: The scale factor that has to bemultiplied with the disparity values in the disparity

image stream to get the actual disparity measurements. This value is always 0.0625.

Scan3dCoordinateOffset (read-only)
• type: Float

• description: The offset that has to be added to the disparity values in the disparity image

stream to get the actual disparity measurements. For the rc_cube, this value is always 0 and
can therefore be disregarded.

Scan3dInvalidDataFlag (read-only)
• type: Boolean

• description: Is always true, which means that invalid data in the disparity image is marked
by a specific value defined by the Scan3dInvalidDataValue parameter.

Scan3dInvalidDataValue (read-only)
• type: Float

• description: Is the value which stands for invalid disparity. This value is always 0, which

means that disparity values of 0 correspond to invalid measurements. To distinguish be-

tween invalid disparity measurements and disparity measurements of 0 for objects which

are infinitely far away, the rc_cube sets the disparity value for the latter to the smallest possi-
ble disparity value of 0.0625. This still corresponds to an object distance of several hundred

meters.

6.2.3.7 Category: ChunkDataControl
ChunkModeActive

• type: Boolean

• default: False

• description: Enables chunk data that is delivered with every image.

Roboception GmbH

Manual: rc_cube

178 Rev: 21.04.0

Status: Apr 15, 2021

6.2. GigE Vision 2.0/GenICam image interface

6.2.4 Custom GenICam features of the rc_cube
6.2.4.1 Category: AcquisitionControl
AcquisitionAlternateFilter (read-only if IOControl module is not licensed)

• type: Enumeration, one of Off, OnlyHigh or OnlyLow

• default: Off

• description: If this parameter is set to OnlyHigh (or OnlyLow) and the LineSource is set to
ExposureAlternateActive for any output, then only camera images are delivered that are
captured while the output is high, i.e. a potentially connected projector is on (or low, i.e. a

potentially connected projector is off). This parameter is a simple means for only getting im-

ages without projected pattern. The minimal time difference between camera and disparity

images will be about 40 ms in this case (see IOControl, Section 5.3.4.1).
AcquisitionMultiPartMode

• type: Enumeration, one of SingleComponent or SynchronizedComponents

• default: SingleComponent

• description: Only effective in MultiPart mode. If this parameter is set to SingleComponent
the images are sent immediately as a single component per frame/buffer when they become

available. This is the same behavior as when MultiPart is not supported by the client. If set to

SynchronizedComponents all enabled components are time synchronized on the rc_cube and
only sent (in one frame/buffer) when they are all available for that timestamp.

ExposureTimeAutoMax

• type: Float, ranges from 66 µs to 18000 µs

• default: 18000 µs

• description: Maximal exposure time in auto exposure mode (Max Exposure, Section 5.1.1.4).
ExposureRegionOffsetX

• type: Integer in the range of 0 to 1280

• default: 0

• description: Horizontal offset of exposure region (Section 5.1.1.4) in pixel.
ExposureRegionOffsetY

• type: Integer in the range of 0 to 960

• default: 0

• description: Vertical offset of exposure region (Section 5.1.1.4) in pixel.
ExposureRegionWidth

• type: Integer in the range of 0 to 1280

• default: 0

• description: Width of exposure region (Section 5.1.1.4) in pixel.
ExposureRegionHeight

• type: Integer in the range of 0 to 960

• default: 0

• description: Height of exposure region (Section 5.1.1.4) in pixel.
RcExposureAutoAverageMax

• type: Float in the range of 0 to 1

Roboception GmbH

Manual: rc_cube

179 Rev: 21.04.0

Status: Apr 15, 2021

6.2. GigE Vision 2.0/GenICam image interface

• default: 0.75

• description: Maximum brightness for the auto exposure function (Section 5.1.1.4) as value
between 0 (dark) and 1 (bright).

RcExposureAutoAverageMin

• type: Float in the range of 0 to 1

• default: 0.25

• description: Minimum brightness for the auto exposure function (Section 5.1.1.4) as value be-
tween 0 (dark) and 1 (bright).

6.2.4.2 Category: Scan3dControl
FocalLengthFactor (read-only)

• type: Float

• description: The focal length scaled to an image width of 1 pixel. To get the focal length in

pixels for a certain image, this value must be multiplied by the width of the received image.

See also parameter Scan3dFocalLength.

Baseline (read-only)
• type: Float

• description: This parameter is deprecated. The parameter Scan3dBaseline should be used
instead.

6.2.4.3 Category: DepthControl
DepthAcquisitionMode

• type: Enumeration, one of SingleFrame, SingleFrameOut1 or Continuous

• default: Continuous

• description: In single frame mode, stereo matching is performed upon each call of

DepthAcquisitionTrigger. The SingleFrameOut1 mode can be used to control an external
projector. It sets the line source of Out1 to ExposureAlternateActive upon each trigger and
resets it to Low as soon as the images for stereo matching are grabbed. However, the line
source will only be changed if the IOControl license is available. In continuous mode, stereo

matching is performed continuously.

DepthAcquisitionTrigger

• type: Command

• description: This command triggers stereo matching of the next available stereo image pair,

if DepthAcquisitionMode is set to SingleFrame or SingleFrameOut1.

DepthQuality

• type: Enumeration, one of Low, Medium, High, or Full (only with StereoPlus license)
• default: High

• description: Quality of disparity images. Lower quality results in disparity images with lower

resolution (Quality, Section 5.1.2.5).
DepthDoubleShot

• type: Boolean

• default: False

Roboception GmbH

Manual: rc_cube

180 Rev: 21.04.0

Status: Apr 15, 2021

6.2. GigE Vision 2.0/GenICam image interface

• description: True for improving the stereo matching result of a scene recorded with a projec-
tor by filling holes with depth information computed from images without projector pattern.

(Double-Shot, Section 5.1.2.5).
DepthStaticScene

• type: Boolean

• default: False

• description: True for averaging 8 consecutive camera images for improving the stereomatch-
ing result. (Static, Section 5.1.2.5).

DepthSmooth (read-only if StereoPlus license is not available)
• type: Boolean

• default: False

• description: True for advanced smoothing of disparity values. (Smoothing, Section 5.1.2.5).
DepthFill

• type: Integer, ranges from 0 pixel to 4 pixels

• default: 3 pixels

• description: Value in pixels for Fill-In (Section 5.1.2.5).
DepthSeg

• type: Integer, ranges from 0 pixel to 4000 pixels

• default: 200 pixels

• description: Value in pixels for Segmentation (Section 5.1.2.5).
DepthMinConf

• type: Float, ranges from 0.0 to 1.0

• default: 0.0

• description: Value for Minimum Confidence filtering (Section 5.1.2.5).
DepthMinDepth

• type: Float, ranges from 0.1 m to 100.0 m

• default: 0.1 m

• description: Value in meters for Minimum Distance filtering (Section 5.1.2.5).
DepthMaxDepth

• type: Float, ranges from 0.1m to 100.0 m

• default: 100.0 m

• description: Value in meters for Maximum Distance filtering (Section 5.1.2.5).
DepthMaxDepthErr

• type: Float, ranges from 0.01 m to 100.0 m

• default: 100.0 m

• description: Value in meters for Maximum Depth Error filtering (Section 5.1.2.5).

Roboception GmbH

Manual: rc_cube

181 Rev: 21.04.0

Status: Apr 15, 2021

6.2. GigE Vision 2.0/GenICam image interface

6.2.5 Chunk data
The rc_cube supports chunk parameters that are transmitted with every image. Chunk parameters all
have the prefix Chunk. Their meaning equals their non-chunk counterparts, except that they belong to
the corresponding image, e.g. Scan3dFocalLength depends on ComponentSelector and DepthQuality
as both can change the image resolution. The parameter ChunkScan3dFocalLength that is delivered
with an image fits to the resolution of the corresponding image.

Particularly useful chunk parameters are:

• ChunkComponentSelector selects for which component to extract the chunk data in MultiPart
mode.

• ChunkComponentID and ChunkComponentIDValue provide the relation of the image to its compo-
nent (e.g. camera image or disparity image) without guessing from the image format or size.

• ChunkLineStatusAll provides the status of all GPIOs at the time of image acquisition. See
LineStatusAll above for a description of bits.

• ChunkScan3d... parameters are useful for 3D reconstruction as described in Section Image streamconversions (Section 6.2.7).
• ChunkPartIndex provides the index of the image part in this MultiPart block for the selected com-
ponent (ChunkComponentSelector).

• ChunkRcOut1Reduction gives a ratio of how much the brightness of the images with GPIO Out1
LOW is lower than the brightness of the images with GPIO Out1 HIGH. For example, a value

of 0.2 means that the images with GPIO Out1 LOW have 20% less brightness than the images

with GPIO Out1 HIGH. This value is only available if exp_auto_mode of the stereo camera is set to
AdaptiveOut1 or Out1High (auto exposure mode, Section 5.1.1.4).

Chunk data is enabled by setting the GenICam parameter ChunkModeActive to True.

6.2.6 Provided image streams
The rc_cube provides the following five different image streams via the GenICam interface:

Roboception GmbH

Manual: rc_cube

182 Rev: 21.04.0

Status: Apr 15, 2021

6.2. GigE Vision 2.0/GenICam image interface

Component name PixelFormat Width×Height Description

Intensity

Mono8 (monochrome
cameras)

YCbCr411_8 (color
cameras)

1280×960 Left rectified camera im-

age

IntensityCombined

Mono8 (monochrome
cameras)

YCbCr411_8 (color
cameras)

1280×1920 Left rectified camera im-

age stacked on right recti-

fied camera image

Disparity Coord3D_C16

1280×1920

640×480

320×240

214×160

Disparity image in de-

sired resolution, i.e.,

DepthQuality of Full,
High, Medium or Low

Confidence Confidence8 same as Disparity Confidence image

Error Error8 (custom:

0x81080001)

same as Disparity Disparity error image

Each image comes with a buffer timestamp and the PixelFormat given in the above table. This PixelFor-
mat should be used to distinguish between the different image types. Images belonging to the same

acquisition timestamp can be found by comparing the GenICam buffer timestamps.

6.2.7 Image stream conversions
The disparity image contains 16 bit unsigned integer values. These values must be multiplied by the

scale value given in the GenICam feature Scan3dCoordinateScale to get the disparity values 𝑑 in pix-
els. To compute the 3D object coordinates from the disparity values, the focal length and the baseline

as well as the principle point are required. These parameters are transmitted as GenICam featuresScan3dFocalLength, Scan3dBaseline, Scan3dPrincipalPointU and Scan3dPrincipalPointV. The focal length
and principal point depend on the image resolution of the selected component. Knowing these values,

the pixel coordinates and the disparities can be transformed into 3D object coordinates in the camera

coordinate frame using the equations described in Computing depth images and point clouds (Section
5.1.2.2).

Assuming that 𝑑16𝑖𝑘 is the 16 bit disparity value at column 𝑖 and row 𝑘 of a disparity image, the float
disparity in pixels 𝑑𝑖𝑘 is given by

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · Scan3dCoordinateScale

The 3D reconstruction in meters can be written with the GenICam parameters as:

𝑃𝑥 = (𝑖+ 0.5− Scan3dPrincipalPointU)
Scan3dBaseline

𝑑𝑖𝑘
,

𝑃𝑦 = (𝑘 + 0.5− Scan3dPrincipalPointV)
Scan3dBaseline

𝑑𝑖𝑘
,

𝑃𝑧 = Scan3dFocalLength
Scan3dBaseline

𝑑𝑖𝑘
.

The confidence image contains 8 bit unsigned integer values. These values have to be divided by 255 to

Roboception GmbH

Manual: rc_cube

183 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

get the confidence as value between 0 an 1.

The error image contains 8 bit unsigned integer values. The error 𝑒𝑖𝑘 must be multiplied by the scale
value given in the GenICam feature Scan3dCoordinateScale to get the disparity-error values 𝑑𝑒𝑝𝑠 in pixels.
According to the description in Confidence and error images (Section 5.1.2.3), the depth error 𝑧𝑒𝑝𝑠 in
meters can be computed with GenICam parameters as

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · Scan3dCoordinateScale,

𝑧𝑒𝑝𝑠 =
𝑒𝑖𝑘 · Scan3dCoordinateScale · Scan3dFocalLength · Scan3dBaseline

(𝑑𝑖𝑘)2
.

Note: It is preferable to enable chunk data with the parameter ChunkModeActive and to use
the chunk parameters ChunkScan3dCoordinateScale, ChunkScan3dFocalLength, ChunkScan3dBaseline,ChunkScan3dPrincipalPointU and ChunkScan3dPrincipalPointV that are delivered with every image, be-
cause their values already fit to the image resolution of the corresponding image.

For more information about disparity, error, and confidence images, please refer to Stereo match-ing (Section 5.1.2).

6.3 REST-API interface
Aside from the GenICam interface (Section 6.2), the rc_cube offers a comprehensive RESTful web interface
(REST-API) which any HTTP client or library can access. Whereas most of the provided parameters,

services, and functionalities can also be accessed via the user-friendly Web GUI (Section 6.1), the REST-
API serves rather as a machine-to-machine interface to the rc_cube, e.g., to programmatically

• set and get run-time parameters of computation nodes, e.g., of cameras or image processing

modules;

• do service calls, e.g., to start and stop individual computational nodes, or to use offered services

such as the hand-eye calibration;

• read the current state of the system and individual computational nodes; or

• update the rc_cube’s firmware or license.
Note: In the rc_cube’s REST-API, a node is a computational component that bundles certain algorith-
mic functionality and offers a holistic interface (parameters, services, current status). Examples for

such nodes are the stereo matching node or the hand-eye calibration node.

6.3.1 General API structure
The general entry point to the rc_cube’s API is http://<host>/api/, where <host> is either the device’s
IP address or its host name as known by the respective DHCP server, as explained in network configuration
(Section 3.5). Accessing this entry point with a web browser lets the user explore and test the full API

during run-time using the Swagger UI (Section 6.3.4).
For actual HTTP requests, the current API version is appended to the entry point of the API, i.e., http:/
/<host>/api/v1. All data sent to and received by the REST-API follows the JavaScript Object Notation
(JSON). The API is designed to let the user create, retrieve, modify, and delete so-called resources as
listed in Available resources and requests (Section 6.3.2) using the HTTP requests below.

Roboception GmbH

Manual: rc_cube

184 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

Request type Description

GET Access one or more resources

and return the result as JSON.

PUT Modify a resource and return

the modified resource as JSON.

DELETE Delete a resource.

POST Upload file (e.g., license or

firmware image).

Depending on the type and the specific request itself, arguments to HTTP requests can be transmitted
as part of the path (URI) to the resource, as query string, as form data, or in the body of the request.
The following examples use the command line tool curl, which is available for various operating systems.
See https://curl.haxx.se.

• Get a node’s current status; its name is encoded in the path (URI)

curl -X GET 'http://<host>/api/v1/nodes/rc_stereomatching'

• Get values of some of a node’s parameters using a query string

curl -X GET 'http://<host>/api/v1/nodes/rc_stereomatching/parameters?name=minconf&
→˓name=maxdepth'

• Set a node’s parameter as JSON-encoded text in the body of the request

curl -X PUT --header 'Content-Type: application/json' -d '[{"name": "mindepth", "value": 0.
→˓1}]' 'http://<host>/api/v1/nodes/rc_stereomatching/parameters'

As for the responses to such requests, some common return codes for the rc_cube’s API are:
Status Code Description

200 OK The request was successful; the

resource is returned as JSON.

400 Bad Request A required attribute or argu-

ment of the API request is miss-

ing or invalid.

404 Not Found A resource could not be ac-

cessed; e.g., an ID for a resource

could not be found.

403 Forbidden Access is (temporarily) forbid-

den; e.g., some parameters are

locked while a GigE Vision appli-

cation is connected.

429 Too many requests Rate limited due to excessive re-

quest frequency.

The following listing shows a sample response to a successful request that accesses information about

the rc_stereomatching node’s minconf parameter:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 157

{
"name": "minconf",
"min": 0,
"default": 0,
"max": 1,

(continues on next page)

Roboception GmbH

Manual: rc_cube

185 Rev: 21.04.0

Status: Apr 15, 2021

https://curl.haxx.se

6.3. REST-API interface

(continued from previous page)

"value": 0,
"type": "float64",
"description": "Minimum confidence"

}

Note: The actual behavior, allowed requests, and specific return codes depend heavily on the specific
resource, context, and action. Please refer to the rc_cube’s available resources (Section 6.3.2) and to
each software module’s (Section 5) parameters and services.

6.3.2 Available resources and requests
The available REST-API resources are structured into the following parts:

• /nodes Access the rc_cube’s software modules (Section 5) with their run-time status, parameters,
and offered services.

• /logs Access the log files on the rc_cube.
• /system Access the system state, set network configuration and manage licenses as well as

firmware updates.

6.3.2.1 Nodes, parameters, and services
Nodes represent the rc_cube’s software modules (Section 5), each bundling a certain algorithmic func-
tionality. All available REST-API nodes can be listed with their service calls and parameters using

curl -X GET http://<host>/api/v1/nodes

Information about a specific node (e.g., rc_stereocamera) can be retrieved using

curl -X GET http://<host>/api/v1/nodes/rc_stereocamera

Status: During run-time, each node offers information about its current status. This includes not only
the current processing status of the module (e.g., running or stale), but most nodes also of-
fer run-time statistics or read-only parameters, so-called status values. As an example, the
rc_stereocamera values can be retrieved using

curl -X GET http://<host>/api/v1/nodes/rc_stereocamera/status

Note: The returned status values are specific to individual nodes and are documented in the
respective software module (Section 5).
Note: The status values are only reported when the respective node is in the running state.

Parameters: Most nodes expose parameters via the rc_cube’s REST-API to allow their run-time behav-
iors to be changed according to application context or requirements. The REST-API permits to read

and write a parameter’s value, but also provides further information such asminimum, maximum,

and default values.

As an example, the rc_stereomatching parameters can be retrieved using

curl -X GET http://<host>/api/v1/nodes/rc_stereomatching/parameters

Its quality parameter could be set to Full using

curl -X PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?quality=Full

Roboception GmbH

Manual: rc_cube

186 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

or equivalently

curl -X PUT --header 'Content-Type: application/json' -d '{ "value": "Full" }' http://<host>
→˓/api/v1/nodes/rc_stereomatching/parameters/quality

Note: Run-time parameters are specific to individual nodes and are documented in the respec-
tive software module (Section 5).
Note: Most of the parameters that nodes offer via the REST-API can be explored and tested via
the rc_cube’s user-friendly Web GUI (Section 6.1).
Note: Some parameters exposed via the rc_cube’s REST-API are also available from the GigEVision 2.0/GenICam image interface (Section 6.2). Please note that setting those parameters via
the REST-API or Web GUI is prohibited if a GenICam client is connected.

In addition, each node that offers run-time parameters also features services to save, i.e., persist,

the current parameter setting, or to restore the default values for all of its parameters.

Services: Some nodes also offer services that can be called via REST-API, e.g., to save and restore pa-
rameters as discussed above, or to start and stop nodes. As an example, the services of the hand-eye calibration module (Section 5.3.1.5) could be listed using
curl -X GET http://<host>/api/v1/nodes/rc_hand_eye_calibration/services

A node’s service is called by issuing a PUT request for the respective resource and providing the
service-specific arguments (see the "args" field of the Service data model, Section 6.3.3). As an
example, the stereo matching module can be triggered to do an acquisition by:

curl -X PUT --header 'Content-Type: application/json' -d '{ "args": {} }' http://<host>/api/
→˓v1/nodes/rc_stereomatching/services/acquisition_trigger

Note: The services and corresponding argument data models are specific to individual nodes
and are documented in the respective software module (Section 5).

The following list includes all REST-API requests regarding the node’s status, parameters, and services

calls:

GET /nodes
Get list of all available nodes.

Template request
GET /api/v1/nodes HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_stereocamera",
"parameters": [
"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [

(continues on next page)

Roboception GmbH

Manual: rc_cube

187 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

(continued from previous page)

"save_parameters",
"reset_defaults"

],
"status": "running"

},
{

"name": "rc_hand_eye_calibration",
"parameters": [
"grid_width",
"grid_height",
"robot_mounted"

],
"services": [
"save_parameters",
"reset_defaults",
"set_pose",
"reset",
"save",
"calibrate",
"get_calibration"

],
"status": "stale"

},
{

"name": "rc_stereomatching",
"parameters": [
"quality",
"seg",
"fill",
"minconf",
"mindepth",
"maxdepth",
"maxdeptherr"

],
"services": [

"save_parameters",
"reset_defaults"

],
"status": "running"

}
]

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns array of NodeInfo)

Referenced Data Models
• NodeInfo (Section 6.3.3)

GET /nodes/{node}
Get info on a single node.

Template request
GET /api/v1/nodes/<node> HTTP/1.1

Sample response

Roboception GmbH

Manual: rc_cube

188 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.3. REST-API interface

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_stereocamera",
"parameters": [

"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"save_parameters",
"reset_defaults"

],
"status": "running"

}

Parameters
• node (string) – name of the node (required)

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns NodeInfo)
• 404 Not Found – node not found

Referenced Data Models
• NodeInfo (Section 6.3.3)

GET /nodes/{node}/parameters
Get parameters of a node.

Template request
GET /api/v1/nodes/<node>/parameters?name=<name> HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 25

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",

(continues on next page)

Roboception GmbH

Manual: rc_cube

189 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. REST-API interface

(continued from previous page)

"type": "bool",
"value": true

},
{

"default": 0.007,
"description": "Maximum exposure time in s if exp_auto is true",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_max",
"type": "float64",
"value": 0.007

}
]

Parameters
• node (string) – name of the node (required)

Query Parameters
• name (string) – limit result to parameters with name (optional)

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns array of Parameter)
• 404 Not Found – node not found

Referenced Data Models
• Parameter (Section 6.3.3)

PUT /nodes/{node}/parameters
Update multiple parameters.

Template request
PUT /api/v1/nodes/<node>/parameters HTTP/1.1
Accept: application/json

[
{

"name": "string",
"value": {}

}
]

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

190 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. REST-API interface

(continued from previous page)

"value": 10
},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": false

},
{

"default": 0.005,
"description": "Manual exposure time in s if exp_auto is false",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_value",
"type": "float64",
"value": 0.005

}
]

Parameters
• node (string) – name of the node (required)

Request JSON Array of Objects
• parameters (ParameterNameValue) – array of parameters (required)

Request Headers
• Accept – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns array of Parameter)
• 400 Bad Request – invalid parameter value

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by

a running GigE Vision application or there is no valid license for this module.

• 404 Not Found – node not found

Referenced Data Models
• Parameter (Section 6.3.3)
• ParameterNameValue (Section 6.3.3)

GET /nodes/{node}/parameters/{param}
Get a specific parameter of a node.

Template request
GET /api/v1/nodes/<node>/parameters/<param> HTTP/1.1

Sample response

Roboception GmbH

Manual: rc_cube

191 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. REST-API interface

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": "H",
"description": "Quality, i.e. H, M or L",
"max": "",
"min": "",
"name": "quality",
"type": "string",
"value": "H"

}

Parameters
• node (string) – name of the node (required)
• param (string) – name of the parameter (required)

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns Parameter)
• 404 Not Found – node or parameter not found

Referenced Data Models
• Parameter (Section 6.3.3)

PUT /nodes/{node}/parameters/{param}
Update a specific parameter of a node.

Template request
PUT /api/v1/nodes/<node>/parameters/<param> HTTP/1.1
Accept: application/json

{
"value": {}

}

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"default": "H",
"description": "Quality, i.e. H, M or L",
"max": "",
"min": "",
"name": "quality",
"type": "string",
"value": "M"

}

Parameters
• node (string) – name of the node (required)
• param (string) – name of the parameter (required)

Roboception GmbH

Manual: rc_cube

192 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. REST-API interface

Request JSON Object
• parameter (ParameterValue) – parameter to be updated as JSON object (re-quired)

Request Headers
• Accept – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns Parameter)
• 400 Bad Request – invalid parameter value

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by

a running GigE Vision application or there is no valid license for this module.

• 404 Not Found – node or parameter not found

Referenced Data Models
• Parameter (Section 6.3.3)
• ParameterValue (Section 6.3.3)

GET /nodes/{node}/services
Get descriptions of all services a node offers.

Template request
GET /api/v1/nodes/<node>/services HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "Restarts the module.",
"name": "restart",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Starts the module.",
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Stops the module.",
"name": "stop",
"response": {

"accepted": "bool",

(continues on next page)

Roboception GmbH

Manual: rc_cube

193 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. REST-API interface

(continued from previous page)

"current_state": "string"
}

}
]

Parameters
• node (string) – name of the node (required)

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns array of Service)
• 404 Not Found – node not found

Referenced Data Models
• Service (Section 6.3.3)

GET /nodes/{node}/services/{service}
Get description of a node’s specific service.

Template request
GET /api/v1/nodes/<node>/services/<service> HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "int32"

},
"description": "Save a pose (grid or gripper) for later calibration.",
"name": "set_pose",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Parameters
• node (string) – name of the node (required)

Roboception GmbH

Manual: rc_cube

194 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. REST-API interface

• service (string) – name of the service (required)
Response Headers

• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns Service)
• 404 Not Found – node or service not found

Referenced Data Models
• Service (Section 6.3.3)

PUT /nodes/{node}/services/{service}
Call a service of a node. The required args and resulting response depend on the specific node

and service.

Template request
PUT /api/v1/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json

{
"args": {}

}

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "set_pose",
"response": {
"message": "Grid detected, pose stored.",
"status": 1,
"success": true

}
}

Parameters
• node (string) – name of the node (required)
• service (string) – name of the service (required)

Request JSON Object
• service args (Service) – example args (required)

Request Headers
• Accept – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – Service call completed (returns Service)
• 403 Forbidden – Service call forbidden, e.g. because there is no valid license for

this module.

• 404 Not Found – node or service not found

Roboception GmbH

Manual: rc_cube

195 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. REST-API interface

Referenced Data Models
• Service (Section 6.3.3)

GET /nodes/{node}/status
Get status of a node.

Template request
GET /api/v1/nodes/<node>/status HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": {
"baseline": "0.0650542",
"color": "0",
"exp": "0.00426667",
"focal": "0.844893",
"fps": "25.1352",
"gain": "12.0412",
"height": "960",
"temp_left": "39.6",
"temp_right": "38.2",
"time": "0.00406513",
"width": "1280"

}
}

Parameters
• node (string) – name of the node (required)

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns NodeStatus)
• 404 Not Found – node not found

Referenced Data Models
• NodeStatus (Section 6.3.3)

6.3.2.2 System and logs
The following resources and requests expose the rc_cube’s system-level API. They enable

• access to log files (system-wide or module-specific)

• access to information about the device and run-time statistics such as date, MAC address, clock-

time synchronization status, and available resources;

• management of installed software licenses; and

• the rc_cube to be updated with a new firmware image.

Roboception GmbH

Manual: rc_cube

196 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. REST-API interface

GET /logs
Get list of available log files.

Template request
GET /api/v1/logs HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

[
{

"date": 1503060035.0625782,
"name": "rcsense-api.log",
"size": 730

},
{

"date": 1503060035.741574,
"name": "stereo.log",
"size": 39024

},
{

"date": 1503060044.0475223,
"name": "camera.log",
"size": 1091

}
]

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns array of LogInfo)

Referenced Data Models
• LogInfo (Section 6.3.3)

GET /logs/{log}
Get a log file. Content type of response depends on parameter ‘format’.

Template request
GET /api/v1/logs/<log>?format=<format>&limit=<limit> HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"date": 1581609251.8168414,
"log": [

{
"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 registered with control access.",
"timestamp": 1581609249.61

},
{

(continues on next page)

Roboception GmbH

Manual: rc_cube

197 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.3. REST-API interface

(continued from previous page)

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 deregistered.",
"timestamp": 1581609249.739

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 registered with control access.",
"timestamp": 1581609250.94

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 deregistered.",
"timestamp": 1581609251.819

}
],
"name": "gev.log",
"size": 42112

}

Parameters
• log (string) – name of the log file (required)

Query Parameters
• format (string) – return log as JSON or raw (one of json, raw; default: json)(optional)
• limit (integer) – limit to last x lines in JSON format (default: 100) (optional)

Response Headers
• Content-Type – text/plain application/json

Status Codes
• 200 OK – successful operation (returns Log)
• 404 Not Found – log not found

Referenced Data Models
• Log (Section 6.3.3)

GET /system
Get system information on device.

Template request
GET /api/v1/system HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"firmware": {

"active_image": {
"image_version": "rc_cube_v1.1.0"

},

(continues on next page)

Roboception GmbH

Manual: rc_cube

198 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. REST-API interface

(continued from previous page)

"fallback_booted": true,
"inactive_image": {

"image_version": "rc_cube_v1.0.0"
},
"next_boot_image": "active_image"

},
"hostname": "rc-cube-02873515",
"link_speed": 1000,
"mac": "00:14:2D:2B:D8:AB",
"ntp_status": {

"accuracy": "48 ms",
"synchronized": true

},
"ptp_status": {

"master_ip": "",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "off"

},
"ready": true,
"serial": "02873515",
"time": 1504080462.641875,
"uptime": 65457.42

}

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns SysInfo)

Referenced Data Models
• SysInfo (Section 6.3.3)

GET /system/backup
Get backup.

Template request
GET /api/v1/system/backup?nodes=<nodes>&load_carriers=<load_carriers>®ions_of_interest=
→˓<regions_of_interest>&grippers=<grippers> HTTP/1.1

Query Parameters
• nodes (boolean) – backup node settings, i.e. parameters and pre-

ferred_orientation (default: True) (optional)
• load_carriers (boolean) – backup load_carriers (default: True) (optional)
• regions_of_interest (boolean) – backup regions_of_interest (default: True)(optional)
• grippers (boolean) – backup grippers (default: True) (optional)

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation

Roboception GmbH

Manual: rc_cube

199 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.3. REST-API interface

POST /system/backup
Restore backup.

Template request
POST /api/v1/system/backup HTTP/1.1
Accept: application/json

{}

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"return_code": {
"message": "backup restored",
"value": 0

},
"warnings": []

}

Request JSON Object
• backup (object) – backup data as json object (required)

Request Headers
• Accept – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation

GET /system/license
Get information about licenses installed on device.

Template request
GET /api/v1/system/license HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"components": {

"hand_eye_calibration": true,
"rectification": true,
"stereo": true

},
"valid": true

}

Response Headers
• Content-Type – application/json

Status Codes

Roboception GmbH

Manual: rc_cube

200 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

6.3. REST-API interface

• 200 OK – successful operation (returns LicenseInfo)
Referenced Data Models

• LicenseInfo (Section 6.3.3)
POST /system/license

Update license on device with a license file.

Template request
POST /api/v1/system/license HTTP/1.1
Accept: multipart/form-data

Form Parameters
• file – license file (required)

Request Headers
• Accept – multipart/form-data

Status Codes
• 200 OK – successful operation

• 400 Bad Request – not a valid license

GET /system/network
Get current network configuration.

Template request
GET /api/v1/system/network HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"current_method": "DHCP",
"default_gateway": "10.0.3.254",
"ip_address": "10.0.1.41",
"settings": {

"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

},
"subnet_mask": "255.255.252.0"

}

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns NetworkInfo)

Referenced Data Models
• NetworkInfo (Section 6.3.3)

Roboception GmbH

Manual: rc_cube

201 Rev: 21.04.0

Status: Apr 15, 2021

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.3. REST-API interface

GET /system/network/settings
Get current network settings.

Template request
GET /api/v1/system/network/settings HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

}

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns NetworkSettings)

Referenced Data Models
• NetworkSettings (Section 6.3.3)

PUT /system/network/settings
Set current network settings.

Template request
PUT /api/v1/system/network/settings HTTP/1.1
Accept: application/json

{}

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

}

Request JSON Object
• settings (NetworkSettings) – network settings to apply (required)

Request Headers
• Accept – application/json

Response Headers
• Content-Type – application/json

Roboception GmbH

Manual: rc_cube

202 Rev: 21.04.0

Status: Apr 15, 2021

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

6.3. REST-API interface

Status Codes
• 200 OK – successful operation (returns NetworkSettings)
• 400 Bad Request – invalid/missing arguments

• 403 Forbidden – Changing network settings forbidden because this is locked by

a running GigE Vision application.

Referenced Data Models
• NetworkSettings (Section 6.3.3)

PUT /system/reboot
Reboot the device.

Template request
PUT /api/v1/system/reboot HTTP/1.1

Status Codes
• 200 OK – successful operation

GET /system/rollback
Get information about currently active and inactive firmware/system images on device.

Template request
GET /api/v1/system/rollback HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_cube_v1.1.0"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "rc_cube_v1.0.0"

},
"next_boot_image": "active_image"

}

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns FirmwareInfo)

Referenced Data Models
• FirmwareInfo (Section 6.3.3)

PUT /system/rollback
Rollback to previous firmware version (inactive system image).

Template request
PUT /api/v1/system/rollback HTTP/1.1

Roboception GmbH

Manual: rc_cube

203 Rev: 21.04.0

Status: Apr 15, 2021

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.3. REST-API interface

Status Codes
• 200 OK – successful operation

• 400 Bad Request – already set to use inactive partition on next boot

• 500 Internal Server Error – internal error

GET /system/update
Get information about currently active and inactive firmware/system images on device.

Template request
GET /api/v1/system/update HTTP/1.1

Sample response
HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_cube_v1.1.0"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "rc_cube_v1.0.0"

},
"next_boot_image": "active_image"

}

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – successful operation (returns FirmwareInfo)

Referenced Data Models
• FirmwareInfo (Section 6.3.3)

POST /system/update
Update firmware/system image with a mender artifact. Reboot is required afterwards in order to

activate updated firmware version.

Template request
POST /api/v1/system/update HTTP/1.1
Accept: multipart/form-data

Form Parameters
• file – mender artifact file (required)

Request Headers
• Accept – multipart/form-data

Status Codes
• 200 OK – successful operation

• 400 Bad Request – client error, e.g. no valid mender artifact

Roboception GmbH

Manual: rc_cube

204 Rev: 21.04.0

Status: Apr 15, 2021

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

6.3. REST-API interface

6.3.3 Data type definitions
The REST-API defines the following data models, which are used to access or modify the available re-sources (Section 6.3.2) either as required attributes/parameters of the requests or as return types.
FirmwareInfo: Information about currently active and inactive firmware images, and what image is/will

be booted.

An object of type FirmwareInfo has the following properties:

• active_image (ImageInfo) - see description of ImageInfo
• fallback_booted (boolean) - true if desired image could not be booted and fallback boot to
the previous image occurred

• inactive_image (ImageInfo) - see description of ImageInfo
• next_boot_image (string) - firmware image that will be booted next time (one of
active_image, inactive_image)

Template object
{

"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

}

FirmwareInfo objects are nested in SysInfo, and are used in the following requests:
• GET /system/rollback

• GET /system/update

ImageInfo: Information about specific firmware image.
An object of type ImageInfo has the following properties:

• image_version (string) - image version
Template object
{

"image_version": "string"
}

ImageInfo objects are nested in FirmwareInfo.
LicenseComponentConstraint: Constraints on the module version.

An object of type LicenseComponentConstraint has the following properties:

• max_version (string) - optional maximum supported version (exclusive)
• min_version (string) - optional minimum supported version (inclusive)

Template object
{

"max_version": "string",
"min_version": "string"

}

LicenseComponentConstraint objects are nested in LicenseConstraints.

Roboception GmbH

Manual: rc_cube

205 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

LicenseComponents: List of the licensing status of the individual software modules. The respective
flag is true if the module is unlocked with the currently applied software license.

An object of type LicenseComponents has the following properties:

• hand_eye_calibration (boolean) - hand-eye calibration module
• rectification (boolean) - image rectification module
• stereo (boolean) - stereo matching module

Template object
{

"hand_eye_calibration": false,
"rectification": false,
"stereo": false

}

LicenseComponents objects are nested in LicenseInfo.
LicenseConstraints: Version constrains for modules.

An object of type LicenseConstraints has the following properties:

• image_version (LicenseComponentConstraint) - see description of LicenseComponentCon-straint
Template object
{

"image_version": {
"max_version": "string",
"min_version": "string"

}
}

LicenseConstraints objects are nested in LicenseInfo.
LicenseInfo: Information about the currently applied software license on the device.

An object of type LicenseInfo has the following properties:

• components (LicenseComponents) - see description of LicenseComponents
• components_constraints (LicenseConstraints) - see description of LicenseConstraints
• valid (boolean) - indicates whether the license is valid or not

Template object
{

"components": {
"hand_eye_calibration": false,
"rectification": false,
"stereo": false

},
"components_constraints": {
"image_version": {

"max_version": "string",
"min_version": "string"

}
},
"valid": false

}

LicenseInfo objects are used in the following requests:

• GET /system/license

Roboception GmbH

Manual: rc_cube

206 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

Log: Content of a specific log file represented in JSON format.
An object of type Log has the following properties:

• date (float) - UNIX time when log was last modified
• log (array of LogEntry) - the actual log entries
• name (string) - name of log file
• size (integer) - size of log file in bytes

Template object
{

"date": 0,
"log": [

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

},
{

"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}
],
"name": "string",
"size": 0

}

Log objects are used in the following requests:

• GET /logs/{log}

LogEntry: Representation of a single log entry in a log file.
An object of type LogEntry has the following properties:

• component (string) - module name that created this entry
• level (string) - log level (one of DEBUG, INFO, WARN, ERROR, FATAL)
• message (string) - actual log message
• timestamp (float) - Unix time of log entry

Template object
{

"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}

LogEntry objects are nested in Log.
LogInfo: Information about a specific log file.

An object of type LogInfo has the following properties:

• date (float) - UNIX time when log was last modified
• name (string) - name of log file
• size (integer) - size of log file in bytes

Roboception GmbH

Manual: rc_cube

207 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

Template object
{

"date": 0,
"name": "string",
"size": 0

}

LogInfo objects are used in the following requests:

• GET /logs

NetworkInfo: Current network configuration.
An object of type NetworkInfo has the following properties:

• current_method (string) - method by which current settings were applied (one of INIT,
LinkLocal, DHCP, PersistentIP, TemporaryIP)

• default_gateway (string) - current default gateway
• ip_address (string) - current IP address
• settings (NetworkSettings) - see description of NetworkSettings
• subnet_mask (string) - current subnet mask

Template object
{

"current_method": "string",
"default_gateway": "string",
"ip_address": "string",
"settings": {

"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "string"

},
"subnet_mask": "string"

}

NetworkInfo objects are nested in SysInfo, and are used in the following requests:
• GET /system/network

NetworkSettings: Current network settings.
An object of type NetworkSettings has the following properties:

• dhcp_enabled (boolean) - DHCP enabled
• persistent_default_gateway (string) - Persistent default gateway
• persistent_ip_address (string) - Persistent IP address
• persistent_ip_enabled (boolean) - Persistent IP enabled
• persistent_subnet_mask (string) - Persistent subnet mask

Template object
{

"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,

(continues on next page)

Roboception GmbH

Manual: rc_cube

208 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

(continued from previous page)

"persistent_subnet_mask": "string"
}

NetworkSettings objects are nested in NetworkInfo, and are used in the following requests:
• GET /system/network/settings

• PUT /system/network/settings

NodeInfo: Description of a computational node running on device.
An object of type NodeInfo has the following properties:

• name (string) - name of the node
• parameters (array of string) - list of the node’s run-time parameters
• services (array of string) - list of the services this node offers
• status (string) - status of the node (one of unknown, down, stale, running)

Template object
{

"name": "string",
"parameters": [

"string",
"string"

],
"services": [

"string",
"string"

],
"status": "string"

}

NodeInfo objects are used in the following requests:

• GET /nodes

• GET /nodes/{node}

NodeStatus: Detailed current status of the node including run-time statistics.
An object of type NodeStatus has the following properties:

• status (string) - status of the node (one of unknown, down, stale, running)
• timestamp (float) - Unix time when values were last updated
• values (object) - dictionary with current status/statistics of the node

Template object
{

"status": "string",
"timestamp": 0,
"values": {}

}

NodeStatus objects are used in the following requests:

• GET /nodes/{node}/status

NtpStatus: Status of the NTP time sync.
An object of type NtpStatus has the following properties:

• accuracy (string) - time sync accuracy reported by NTP

Roboception GmbH

Manual: rc_cube

209 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

• synchronized (boolean) - synchronized with NTP server
Template object
{

"accuracy": "string",
"synchronized": false

}

NtpStatus objects are nested in SysInfo.
Parameter: Representation of a node’s run-time parameter. The parameter’s ‘value’ type (and hence

the types of the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be

one of the built-in primitive data types.

An object of type Parameter has the following properties:

• default (type not defined) - the parameter’s default value
• description (string) - description of the parameter
• max (type not defined) - maximum value this parameter can be assigned to
• min (type not defined) - minimum value this parameter can be assigned to
• name (string) - name of the parameter
• type (string) - the parameter’s primitive type represented as string (one of bool, int8, uint8,
int16, uint16, int32, uint32, int64, uint64, float32, float64, string)

• value (type not defined) - the parameter’s current value
Template object
{

"default": {},
"description": "string",
"max": {},
"min": {},
"name": "string",
"type": "string",
"value": {}

}

Parameter objects are used in the following requests:

• GET /nodes/{node}/parameters

• PUT /nodes/{node}/parameters

• GET /nodes/{node}/parameters/{param}

• PUT /nodes/{node}/parameters/{param}

ParameterNameValue: Parameter name and value. The parameter’s ‘value’ type (and hence the types
of the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the

built-in primitive data types.

An object of type ParameterNameValue has the following properties:

• name (string) - name of the parameter
• value (type not defined) - the parameter’s current value

Template object
{

"name": "string",
"value": {}

}

Roboception GmbH

Manual: rc_cube

210 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

ParameterNameValue objects are used in the following requests:

• PUT /nodes/{node}/parameters

ParameterValue: Parameter value. The parameter’s ‘value’ type (and hence the types of the ‘min’, ‘max’
and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the built-in primitive

data types.

An object of type ParameterValue has the following properties:

• value (type not defined) - the parameter’s current value
Template object
{

"value": {}
}

ParameterValue objects are used in the following requests:

• PUT /nodes/{node}/parameters/{param}

PtpStatus: Status of the IEEE1588 (PTP) time sync.
An object of type PtpStatus has the following properties:

• master_ip (string) - IP of the master clock
• offset (float) - time offset in seconds to the master
• offset_dev (float) - standard deviation of time offset in seconds to the master
• offset_mean (float) - mean time offset in seconds to the master
• state (string) - state of PTP (one of off, unknown, INITIALIZING, FAULTY, DISABLED, LISTENING,
PASSIVE, UNCALIBRATED, SLAVE)

Template object
{

"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

}

PtpStatus objects are nested in SysInfo.
Service: Representation of a service that a node offers.

An object of type Service has the following properties:

• args (ServiceArgs) - see description of ServiceArgs
• description (string) - short description of this service
• name (string) - name of the service
• response (ServiceResponse) - see description of ServiceResponse

Template object
{

"args": {},
"description": "string",
"name": "string",
"response": {}

}

Service objects are used in the following requests:

Roboception GmbH

Manual: rc_cube

211 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

• GET /nodes/{node}/services

• GET /nodes/{node}/services/{service}

• PUT /nodes/{node}/services/{service}

ServiceArgs: Arguments required to call a service with. The general representation of these arguments
is a (nested) dictionary. The specific content of this dictionary depends on the respective node and

service call.

ServiceArgs objects are nested in Service.
ServiceResponse: The response returned by the service call. The general representation of this re-

sponse is a (nested) dictionary. The specific content of this dictionary depends on the respective

node and service call.

ServiceResponse objects are nested in Service.
SysInfo: System information about the device.

An object of type SysInfo has the following properties:

• firmware (FirmwareInfo) - see description of FirmwareInfo
• hostname (string) - Hostname
• link_speed (integer) - Ethernet link speed in Mbps
• mac (string) - MAC address
• network (NetworkInfo) - see description of NetworkInfo
• ntp_status (NtpStatus) - see description of NtpStatus
• ptp_status (PtpStatus) - see description of PtpStatus
• ready (boolean) - system is fully booted and ready
• serial (string) - device serial number
• time (float) - system time as Unix timestamp
• uptime (float) - system uptime in seconds

Template object
{

"firmware": {
"active_image": {

"image_version": "string"
},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

},
"hostname": "string",
"link_speed": 0,
"mac": "string",
"network": {
"current_method": "string",
"default_gateway": "string",
"ip_address": "string",
"settings": {

"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,

(continues on next page)

Roboception GmbH

Manual: rc_cube

212 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

(continued from previous page)

"persistent_subnet_mask": "string"
},
"subnet_mask": "string"

},
"ntp_status": {

"accuracy": "string",
"synchronized": false

},
"ptp_status": {

"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

},
"ready": false,
"serial": "string",
"time": 0,
"uptime": 0

}

SysInfo objects are used in the following requests:

• GET /system

Template: Detection template
An object of type Template has the following properties:

• id (string) - Unique identifier of the template
Template object
{

"id": "string"
}

Template objects are used in the following requests:

• GET /nodes/rc_cadmatch/templates

• GET /nodes/rc_cadmatch/templates/{id}

• PUT /nodes/rc_cadmatch/templates/{id}

• GET /nodes/rc_silhouettematch/templates

• GET /nodes/rc_silhouettematch/templates/{id}

• PUT /nodes/rc_silhouettematch/templates/{id}

6.3.4 Swagger UI
The rc_cube’s Swagger UI allows developers to easily visualize and interact with the REST-API, e.g., for
development and testing. Accessing http://<host>/api/ or http://<host>/api/swagger (the former
will automatically be redirected to the latter) opens a visualization of the rc_cube’s general API struc-
ture including all available resources and requests (Section 6.3.2) and offers a simple user interface for
exploring all of its features.

Note: Users must be aware that, although the rc_cube’s Swagger UI is designed to explore and test
the REST-API, it is a fully functional interface. That is, any issued requests are actually processed and

particularly PUT, POST, and DELETE requests might change the overall status and/or behavior of the
device.

Roboception GmbH

Manual: rc_cube

213 Rev: 21.04.0

Status: Apr 15, 2021

https://swagger.io/

6.3. REST-API interface

Fig. 6.2: Initial view of the rc_cube’s Swagger UI with its resources and requests grouped into nodes,
templates, datastreams, logs, and system

Using this interface, available resources and requests can be explored by clicking on them to uncollapse

or recollapse them. The following figure shows an example of how to get a node’s current status by

clicking the Try it out! button, filling in the necessary parameter (node name) and clicking Execute. This

Roboception GmbH

Manual: rc_cube

214 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

action results in the Swagger UI showing, amongst others, the actual curl command that was executed
when issuing the request as well as the response body showing the current status of the requested

node in a JSON-formatted string.

Roboception GmbH

Manual: rc_cube

215 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

Fig. 6.3: Result of requesting the rc_stereomatching node’s status

Roboception GmbH

Manual: rc_cube

216 Rev: 21.04.0

Status: Apr 15, 2021

6.3. REST-API interface

Some actions, such as setting parameters or calling services, require more complex parameters to an

HTTP request. The Swagger UI allows developers to explore the attributes required for these actions

during run-time, as shown in the next example. In the figure below, the attributes required for the

the rc_hand_eye_calibration node’s set_pose service are explored by performing a GET request on
this resource. The response features a full description of the service offered, including all required

arguments with their names and types as a JSON-formatted string.

Fig. 6.4: The result of the GET request on the set_pose service shows the required arguments for this
service call.

Roboception GmbH

Manual: rc_cube

217 Rev: 21.04.0

Status: Apr 15, 2021

6.4. KUKA Ethernet KRL Interface

Users can easily use this preformatted JSON string as a template for the service arguments to actually

call the service:

Fig. 6.5: Filling in the arguments of the set_pose service request

6.4 KUKA Ethernet KRL Interface
The rc_cube provides an Ethernet KRL Interface (EKI Bridge), which allows communicating with therc_cube from KUKA KRL via KUKA.EthernetKRL XML.
Note: The component is optional and requires a separate Roboception’s EKIBridge license (Section
7.5) to be purchased.

Note: The KUKA.EthernetKRL add-on software package version 2.2 or newer must be activated on
the robot controller to use this component.

The EKI Bridge can be used to programmatically

• do service calls, e.g. to start and stop individual computational nodes, or to use offered services

such as the hand-eye calibration or the computation of grasp poses;

• set and get run-time parameters of computation nodes, e.g. of the camera, or disparity calcula-

tion.

Roboception GmbH

Manual: rc_cube

218 Rev: 21.04.0

Status: Apr 15, 2021

6.4. KUKA Ethernet KRL Interface

6.4.1 Ethernet connection configuration
The EKI Bridge listens on port 7000 for EKI XML messages and transparently bridges the rc_cube’s REST-API (Section 6.3). The received EKI messages are transformed to JSON and forwarded to the rc_cube’s
REST-API. The response from the REST-API is transformed back to EKI XML.

The EKI Bridge gives access to run-time parameters and offered services of all computational nodes

described in Software modules (Section 5).
The Ethernet connection to the rc_cube on the robot controller is configured using XML configuration
files.

The EKI XML configuration files of all nodes running on the rc_cube are available for download at:
https://doc.rc-visard.com/latest/en/eki.html#eki-xml-configuration-files

Each node offering run-time parameters has an XML configuration file for setting and getting its param-

eters. These are named following the scheme <node_name>-parameters.xml. Each node’s service has its
own XML configuration file. These are named following the scheme <node_name>-<service_name>.xml.

All elements in the XML files are preset, except for the IP of the rc_cube in the network.
These files must be stored in the directory C:\KRC\ROBOTER\Config\User\Common\EthernetKRL of the
robot controller and they are read in when a connection is initialized.

As an example, an Ethernet connection to configure the rc_stereomatching parameters is established
with the following KRL code.

DECL EKI_Status RET
RET = EKI_INIT("rc_stereomatching-parameters")
RET = EKI_Open("rc_stereomatching-parameters")

; ----------- Desired operation -----------

RET = EKI_Close("rc_stereomatching-parameters")

Note: The EKI Bridge automatically terminates the connection to the client if the received XML tele-
gram is invalid.

6.4.2 Generic XML structure
For data transmission, the EKI Bridge uses <req> as root XML element (short for request).

The root tag always includes the following elements.

• <node>. This includes a child XML element used by the EKI Bridge to identify the target node. The
node name is already included in the XML configuration file.

• <end_of_request>. End of request flag that triggers the request.

The following listing shows the generic XML structure for data transmission.

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

For data reception, the EKI Bridge uses <res> as root XML element (short for response). The root tag
always includes a <return_code> child element.

Roboception GmbH

Manual: rc_cube

219 Rev: 21.04.0

Status: Apr 15, 2021

https://doc.rc-visard.com/latest/en/eki.html#eki-xml-configuration-files

6.4. KUKA Ethernet KRL Interface

<RECEIVE>
<XML>

<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

Note: By default the XML configuration files uses 998 as flag to notify KRL that the response data
record has been received. If this value is already in use, it should be changed in the corresponding

XML configuration file.

6.4.2.1 Return code
The <return_code> element consists of a value and a message attribute.

As for all other components, a successful request returns with a res/return_code/@value of 0. Neg-
ative values indicate that the request failed. The error message is contained in res/return_code/
@message. Positive values indicate that the request succeeded with additional information, contained in
res/return_code/@message as well.

The following codes can be issued by the EKI Bridge component.

Table 6.2: Return codes of the EKI Bridge component

Code Description

0 Success

-1 Parsing error in the conversion from XML to JSON

-2 Internal error

-9 Missing or invalid license for EKI Bridge component

-11 Connection error from the REST-API

Note: The EKI Bridge can also return return code values specific to individual nodes. They are docu-
mented in the respective software module (Section 5).
Note: Due to limitations in KRL, the maximum length of a string returned by the EKI Bridge is 512
characters. All messages larger than this value are truncated.

6.4.3 Services
For the nodes’ services, the XML schema is generated from the service’s arguments and response in

JavaScript Object Notation (JSON) described in Software modules (Section 5). The conversion is done
transparently, except for the conversion rules described below.

Conversions of poses:

A pose is a JSON object that includes position and orientation keys.

{
"pose": {
"position": {
"x": "float64",
"y": "float64",
"z": "float64",

},
"orientation": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

220 Rev: 21.04.0

Status: Apr 15, 2021

6.4. KUKA Ethernet KRL Interface

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64",
"w": "float64",

}
}

}

This JSON object is converted to a KRL FRAME in the XML message.

<pose X="..." Y="..." Z="..." A="..." B="..." C="..."></pose>

Positions are converted from meters to millimeters and orientations are converted from

quaternions to KUKA ABC (in degrees).

Note: No other unit conversions are included in the EKI Bridge. All dimensions and 3D
coordinates that don’t belong to a pose are expected and returned in meters.

Arrays:

Arrays are identified by adding the child element <le> (short for list element) to the list name.
As an example, the JSON object

{
"rectangles": [
{
"x": "float64",
"y": "float64"

}
]

}

is converted to the XML fragment

<rectangles>
<le>
<x>...</x>
<y>...</y>

</le>
</rectangles>

Use of XML attributes:

All JSON keys whose values are a primitive data type and don’t belong to an array are stored

in attributes. As an example, the JSON object

{
"item": {
"uuid": "string",
"confidence": "float64",
"rectangle": {
"x": "float64",
"y": "float64"

}
}

}

is converted to the XML fragment

<item uuid="..." confidence="...">
<rectangle x="..." y="...">

(continues on next page)

Roboception GmbH

Manual: rc_cube

221 Rev: 21.04.0

Status: Apr 15, 2021

6.4. KUKA Ethernet KRL Interface

(continued from previous page)

</rectangle>
</item>

6.4.3.1 Request XML structure
The <SEND> element in the XML configuration file for a generic service follows the specification below.

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/service/<service_name>" Type="STRING"/>
<ELEMENT Tag="req/args/<argX>" Type="<argX_type>"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <service> element includes a child XML element that is used by the EKI Bridge to identify the target
service from the XML telegram. The service name is already included in the configuration file.

The <args> element includes the service arguments and should be configured with EKI_Set<Type> KRL
instructions.

As an example, the <SEND> element of the rc_itempick’s get_load_carriers service (see ItemPick andBoxPick, Section 5.2.3) is:
<SEND>

<XML>
<ELEMENT Tag="req/node/rc_itempick" Type="STRING"/>
<ELEMENT Tag="req/service/get_load_carriers" Type="STRING"/>
<ELEMENT Tag="req/args/load_carrier_ids/le" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <end_of_request> element allows to have arrays in the request. For configuring an array, the
request is split into as many packages as the size of the array. The last telegram contains all tags,

including the <end_of_request> flag, while all other telegrams contain one array element each.

As an example, for requesting two load carrier models to the rc_itempick’s get_load_carriers service,
the user needs to send two XML messages. The first XML telegram is:

<req>
<args>

<load_carrier_ids>
<le>load_carrier1</le>

</load_carrier_ids>
</args>

</req>

This telegram can be sent from KRL with the EKI_Send command, by specifying the list element as path:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_itempick-get_load_carriers", "req/args/load_carrier_ids/le",
→˓"load_carrier1")
RET = EKI_Send("rc_itempick-get_load_carriers", "req/args/load_carrier_ids/le")

The second telegram includes all tags and triggers the request to the rc_itempick node:

<req>
<node>

(continues on next page)

Roboception GmbH

Manual: rc_cube

222 Rev: 21.04.0

Status: Apr 15, 2021

6.4. KUKA Ethernet KRL Interface

(continued from previous page)

<rc_itempick></rc_itempick>
</node>
<service>

<get_load_carriers></get_load_carriers>
</service>
<args>

<load_carrier_ids>
<le>load_carrier2</le>

</load_carrier_ids>
</args>
<end_of_request></end_of_request>

</req>

This telegram can be sent from KRL by specifying req as path for EKI_Send:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_itempick-get_load_carriers", "req/args/load_carrier_ids/le",
→˓"load_carrier2")
RET = EKI_Send("rc_itempick-get_load_carriers", "req")

6.4.3.2 Response XML structure
The <RECEIVE> element in the XML configuration file for a generic service follows the specification below:

<RECEIVE>
<XML>

<ELEMENT Tag="res/<resX>" Type="<resX_type>"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

As an example, the <RECEIVE> element of the rc_april_tag_detect’s detect service (see TagDetect,
Section 5.2.2) is:

<RECEIVE>
<XML>

<ELEMENT Tag="res/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose_frame" Type="STRING"/>
<ELEMENT Tag="res/tags/le/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/tags/le/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose/@X" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Y" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Z" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@A" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@B" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@C" Type="REAL"/>
<ELEMENT Tag="res/tags/le/instance_id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/size" Type="REAL"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

For arrays, the response includes multiple instances of the same XML element. Each element is written

into a separate buffer within EKI and can be read from the buffer with KRL instructions. The number

Roboception GmbH

Manual: rc_cube

223 Rev: 21.04.0

Status: Apr 15, 2021

6.4. KUKA Ethernet KRL Interface

of instances can be requested with EKI_CheckBuffer and each instance can then be read by calling
EKI_Get<Type>.

As an example, the tag poses received after a call to the rc_april_tag_detect’s detect service can be
read in KRL using the following code:

DECL EKI_STATUS RET
DECL INT i
DECL INT num_instances
DECL FRAME poses[32]

DECL FRAME pose = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

RET = EKI_CheckBuffer("rc_april_tag_detect-detect", "res/tags/le/pose")
num_instances = RET.Buff
for i=1 to num_instances

RET = EKI_GetFrame("rc_april_tag_detect-detect", "res/tags/le/pose", pose)
poses[i] = pose

endfor
RET = EKI_ClearBuffer("rc_april_tag_detect-detect", "res")

Note: Before each request from EKI to the rc_cube, all buffers should be cleared in order to store
only the current response in the EKI buffers.

6.4.4 Parameters
All nodes’ parameters can be set and queried from the EKI Bridge. The XML configuration file for a

generic node follows the specification below:

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="req/parameters/<parameter_y>/@value" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>
<RECEIVE>

<XML>
<ELEMENT Tag="res/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@default" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@min" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@max" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@value" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@default" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@min" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@max" Type="REAL"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

The request is interpreted as a get request if all parameter’s value attributes are empty. If any value
attribute is non-empty, it is interpreted as set request of the non-empty parameters.
As an example, the current value of all parameters of rc_stereomatching can be queried using the XML
telegram:

Roboception GmbH

Manual: rc_cube

224 Rev: 21.04.0

Status: Apr 15, 2021

6.4. KUKA Ethernet KRL Interface

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters></parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:

DECL EKI_STATUS RET
RET = EKI_Send("rc_stereomatching-parameters", "req")

The response from the EKI Bridge contains all parameters:

<res>
<parameters>

<acquisition_mode default="Continuous" max="" min="" value="Continuous"/>
<quality default="High" max="" min="" value="High"/>
<static_scene default="0" max="1" min="0" value="0"/>
<seg default="200" max="4000" min="0" value="200"/>
<smooth default="1" max="1" min="0" value="1"/>
<fill default="3" max="4" min="0" value="3"/>
<minconf default="0.5" max="1.0" min="0.5" value="0.5"/>
<mindepth default="0.1" max="100.0" min="0.1" value="0.1"/>
<maxdepth default="100.0" max="100.0" min="0.1" value="100.0"/>
<maxdeptherr default="100.0" max="100.0" min="0.01" value="100.0"/>

</parameters>
<return_code message="" value="0"/>

</res>

The quality parameter of rc_stereomatching can be set to Low by the XML telegram:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters>

<quality value="Low"></quality>
</parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_stereomatching-parameters", "req/parameters/quality/@value",
→˓"Low")
RET = EKI_Send("rc_stereomatching-parameters", "req")

In this case, only the applied value of quality is returned by the EKI Bridge:

<res>
<parameters>

<quality default="High" max="" min="" value="Low"/>
</parameters>
<return_code message="" value="0"/>

</res>

Roboception GmbH

Manual: rc_cube

225 Rev: 21.04.0

Status: Apr 15, 2021

6.5. gRPC image stream interface

6.4.5 Example applications
More detailed robot application examples can be found at https://github.com/roboception/eki_

examples.

6.5 gRPC image stream interface
The gRPC image streaming interface can be used as an alternative to the GigE Vision / GenICam interface
(Section 6.2) for getting camera images and synchronized sets of images (e.g. left camera image and

corresponding disparity image). gRPC is a remote procedure call system that also supports streaming.

It uses Protocol Buffers (see https://developers.google.com/protocol-buffers/) as interface description

language and data serialization. For a gRPC introduction andmore details please see the official website

(https://grpc.io/).

The advantages of the gRPC interface in comparison to GigE Vision are:

• It is simpler to use in own programs than GigE Vision.

• There is gRPC support for a lot of programming languages (see https://grpc.io/).

• The communication is based on TCP instead of UDP and therefore it also works over less stable

networks, e.g. WLAN.

The disadvantages of the gRPC interface in comparison to GigE Vision are:

• It does not support changing parameters, but the REST-API interface (Section 6.3) can be used for
changing parameters.

• It does not (yet) support getting color images. Only monochrome images are supported.

• It is not a standard vision interface like GigE Vision.

The rc_cube provides synchronized image sets via gRPC server side streams on port 50051. The commu-
nication is started by sending an ImageSetRequest message to the server. The message contains the
information about requested images, i.e. left, right, disparity, confidence and disparity_error images

can be enabled separately.

After getting the request, the server starts continuously sending ImageSet messages that contain all
requested images with all parameters necessary for interpreting the images. The images that are con-

tained in an ImageSet message are synchronized, i.e. they are all captured at the same time. The only
exception to this rule is if the out1_mode (Section 5.3.4.1) is set to AlternateExposureActive. In this
case, the camera and disparity images are taken 40 ms apart, so that the GPIO Out1 is LOW when the

left and right images are taken, and HIGH for the disparity, confidence and error images. This mode

is useful when a random dot projector is connected to the rc_visard, because the projector would be
off for capturing the left and right image, and on for the disparity image, which results in undisturbed

camera images and a much denser and more accurate disparity image.

Streaming of images is done until the client closes the connection.

6.5.1 gRPC service definition
syntax = "proto3";

message Time
{

int32 sec = 1; ///< Seconds
int32 nsec = 2; ///< Nanoseconds

}

message Gpios
{

(continues on next page)

Roboception GmbH

Manual: rc_cube

226 Rev: 21.04.0

Status: Apr 15, 2021

https://github.com/roboception/eki_examples
https://github.com/roboception/eki_examples
https://grpc.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://grpc.io/
https://grpc.io/

6.5. gRPC image stream interface

(continued from previous page)

uint32 inputs = 1; ///< bitmask of available inputs
uint32 outputs = 2; ///< bitmask of available outputs
uint32 values = 3; ///< bitmask of GPIO values

}

message Image
{

Time timestamp = 1; ///< Acquisition timestamp of the image
uint32 height = 2; ///< image height (number of rows)
uint32 width = 3; ///< image width (number of columns)
float focal_length = 4; ///< focal length in pixels
float principal_point_u = 5; ///< horizontal position of the principal point
float principal_point_v = 6; ///< vertical position of the principal point
string encoding = 7; ///< Encoding of pixels ["mono8", "mono16"]
bool is_bigendian = 8; ///< is data bigendian, (in our case false)
uint32 step = 9; ///< full row length in bytes
bytes data = 10; ///< actual matrix data, size is (step * height)
Gpios gpios = 11; ///< GPIOs as of acquisition timestamp
float exposure_time = 12; ///< exposure time in seconds
float gain = 13; ///< gain factor in decibel
float noise = 14; ///< noise
float out1_reduction = 16; ///< Fraction of reduction (0.0 - 1.0) of exposure time for

→˓images with GPIO Out1=Low in exp_auto_mode=AdaptiveOut1
float brightness = 17; ///< Current brightness of the image as value between 0 and 1

}

message DisparityImage
{

Time timestamp = 1; ///< Acquisition timestamp of the image
float scale = 2; ///< scale factor
float offset = 3; ///< offset in pixels (in our case 0)
float invalid_data_value = 4; ///< value used to mark pixels as invalid (in our case 0)
float baseline = 5; ///< baseline in meters
float delta_d = 6; ///< Smallest allowed disparity increment. The smallest

→˓achievable depth range resolution is delta_Z = (Z^2/image.focal_length*baseline)*delta_d.
Image image = 7; ///< disparity image

}

message ImageSet
{

Time timestamp = 1;
Image left = 2;
Image right = 3;
DisparityImage disparity = 4;
Image disparity_error = 5;
Image confidence = 6;

}

message ImageSetRequest
{

bool left_enabled = 1;
bool right_enabled = 2;
bool disparity_enabled = 3;
bool disparity_error_enabled = 4;
bool confidence_enabled = 5;

}

service ImageInterface
{

// A server-to-client streaming RPC.
rpc StreamImageSets(ImageSetRequest) returns (stream ImageSet) {}

(continues on next page)

Roboception GmbH

Manual: rc_cube

227 Rev: 21.04.0

Status: Apr 15, 2021

6.6. Time synchronization

(continued from previous page)

}

6.5.2 Image stream conversions
The conversion of disparity images into a point cloud can be done as described in the GigE Vision /GenICam interface (Section 6.2.7).

6.5.3 Limitations
At this time only monochrome images are provided.

6.5.4 Example client
A simple example C++ client can be found at https://github.com/roboception/grpc_image_client_

example.

6.6 Time synchronization
The rc_cube provides timestamps with all images and messages. To compare these with the time on the
application host, the time needs to be properly synchronized.

The time synchronization between the rc_cube and the application host can be done via the Network
Time Protocol (NTP), which is activated by default.

Internal time synchronization between the rc_cube and the connected rc_visard is automatically done via
the Precision Time Protocol (PTP).

The current system time as well as time synchronization status can be queried via REST-API (Section 6.3)
and seen on the Web GUI’s (Section 6.1) System tab.
Note: Depending on the reachability of NTP servers or PTP masters it might take up to several min-
utes until the time is synchronized.

6.6.1 NTP
The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network. A client

periodically requests the current time from a server, and uses it to set and correct its own clock.

By default the rc_cube tries to reach NTP servers from the NTP Pool Project, which will work if the rc_cube
has access to the internet.

If the rc_cube is configured for DHCP (Section 3.5.2) (which is the default setting), it will also request NTP
servers from the DHCP server and try to use those.

6.6.2 PTP
The Precision Time Protocol (PTP, also known as IEEE1588) is a protocol which offers more precise and

robust clock synchronization than with NTP.

Note: Currently, time synchronization between the application host and the rc_cube is not imple-
mented. Please use NTP instead.

Roboception GmbH

Manual: rc_cube

228 Rev: 21.04.0

Status: Apr 15, 2021

https://github.com/roboception/grpc_image_client_example
https://github.com/roboception/grpc_image_client_example

7 Maintenance
7.1 Creating and restoring backups of settings
The rc_cube offers the possibility to download the current settings as backup or for transferring them to
a different rc_visard or rc_cube.
The current settings of the rc_cube can be downloaded on the Web GUI’s (Section 6.1) System tab in theBackup rc_cube Settings row. They can also be downloaded via the rc_cube’s REST-API interface (Section
6.3) using the GET /system/backup request.

For downloading a backup, the user can choose which settings to include:

• nodes: the setting of all modules (parameters and preferred orientations)

• load_carriers: the configured load carriers

• regions_of_interest: the configured 2D and 3D regions of interest

• grippers: the configured grippers

The returned backup should be stored as a .json file.

A backup can be restored to the rc_cube on the Web GUI’s (Section 6.1) System tab in the Backup rc_cubeSettings row by uploading the backup .json file. In the Web GUI the settings included in the backup are
shown and can be chosen for restore. The corresponding REST-API interface (Section 6.3) call is POST
/system/backup.

Warning: When restoring load carriers, all existing load carriers on the rc_cube will get lost and will
be replaced by the content of the backup. The same applies to restoring grippers and regions of

interest.

When restoring a backup, only the settings which are applicable to the rc_cube are restored. Parameters
for modules that do not exist on the device or do not have a valid license will be skipped. If a backup

can only be restored partially, the user will be notified by warnings.

7.2 Updating the firmware
Information about the current firmware image version can be found on the Web GUI’s (Section 6.1) Sys-tem tab in the System information row. It can also be accessed via the rc_cube’s REST-API interface (Section
6.3) using the GET /system request. Users can use either the Web GUI or the REST-API to update the
firmware.

Warning: After a firmware update, all of the software modules’ configured parameters will be reset
to their defaults. Please make sure these settings are persisted on the application-side or client

PC (e.g., using the REST-API interface, Section 6.3) to request all parameters and store them prior to
executing the update.

Roboception GmbH

Manual: rc_cube

229 Rev: 21.04.0

Status: Apr 15, 2021

7.2. Updating the firmware

The following settings are excluded from this and will be persisted across a firmware update:

• the rc_cube’s network configuration including an optional static IP address and the user-

specified device name,

• the latest result of the Hand-eye calibration (Section 5.3.1), i.e., recalibrating the rc_cube w.r.t. a
robot is not required, unless camera mounting has changed, and

Step 1: Download the newest firmware version. Firmware updates will be supplied from of a

Mender artifact file identified by its .mender suffix.

If a new firmware update is available for your rc_cube device, the respective file can be downloaded to a
local computer from http://www.roboception.com/download.

Step 2: Upload the update file. To update with the rc_cube’s REST-API, users may refer to the POST /
system/update request.

To update the firmware via the Web GUI, locate the Software Update row on the System tab and
press the Upload rc_cube Update button. Select the desired update image file (file extension .
mender) from the local file system and open it to start the update.

Depending on the network architecture and configuration, the upload may take several minutes.

During the update via the Web GUI, a progress bar indicates the progress of the upload.

Note: Depending on the web browser, the update progress status shown in the progress bar
may indicate the completion of the update too early. Please wait until a notification window

opens, which indicates the end of the update process. Expect an overall update time of at least

five minutes.

Warning: Do not close the web browser tab which contains the Web GUI or press the renew
button on this tab, because it will abort the update procedure. In that case, repeat the update

procedure from the beginning.

Step 3: Reboot the rc_cube. To apply a firmware update to the rc_cube device, a reboot is required after
having uploaded the new image version.

Note: The new image version is uploaded to the inactive partition of the rc_cube. Only after
rebooting will the inactive partition be activated, and the active partition will become inactive.

If the updated firmware image cannot be loaded, this partition of the rc_cube remains inactive
and the previously installed firmware version from the active partition will be used automati-

cally.

As for the REST-API, the reboot can be performed by the PUT /system/reboot request.

After having uploaded the new firmware via the Web GUI, a notification window is opened, which

offers to reboot the device immediately or to postpone the reboot. To reboot the rc_cube at a later
time, use the Reboot button on the Web GUI’s System tab.

Step 4: Confirm the firmware update. After rebooting the rc_cube, please check the firmware image
version number of the currently active image to make sure that the updated image was success-

fully loaded. You can do so either via the Web GUI’s System tab or via the REST-API’s GET /system/
update request.

Please contact Roboception in case the firmware update could not be applied successfully.

Roboception GmbH

Manual: rc_cube

230 Rev: 21.04.0

Status: Apr 15, 2021

http://www.roboception.com/download

7.3. Restoring the previous firmware version

7.3 Restoring the previous firmware version
After a successful firmware update, the previous firmware image is stored on the inactive partition of

the rc_cube and can be restored in case needed. This procedure is called a rollback.
Note: Using the latest firmware as provided by Roboception is strongly recommended. Hence, roll-
back functionality should only be used in case of serious issues with the updated firmware version.

Rollback functionality is only accessible via the rc_cube’s REST-API interface (Section 6.3) using the PUT /
system/rollback request. It can be issued using any HTTP-compatible client or using a web browser
as described in Swagger UI (Section 6.3.4). Like the update process, the rollback requires a subsequent
device reboot to activate the restored firmware version.

7.4 Rebooting the rc_cube
An rc_cube reboot is necessary after updating the firmware or performing a software rollback. It can be
issued either programmatically, via the rc_cube’s REST-API interface (Section 6.3) using the PUT /system/
reboot request, or manually on the Web GUI’s (Section 6.1) System tab.

7.5 Updating the software license
Licenses that are purchased from Roboception for enabling additional features can be installed via theWeb GUI’s (Section 6.1) System tab. The rc_cube has to be rebooted to apply the licenses.
Note: If a computer screen as well asmouse and keyboard are connected to the rc_cube, the software
license can also be updated directly at the rc_cube using the Web GUI and a separate USB flash drive
from which the new license file can be installed.

7.6 Downloading log files
During operation, the rc_cube logs important information, warnings, and errors into files. If the rc_cube
exhibits unexpected or erroneous behavior, the log files can be used to trace its origin. Log messages

can be viewed and filtered using the Web GUI’s (Section 6.1) Logs tab. If contacting the support (Contact,
Section 9), the log files are very useful for tracking possible problems. To download them as a .tar.gz

file, click on Download all logs on the Web GUI’s Logs tab.
Aside from the Web GUI, the logs are also accessible via the rc_cube’s REST-API interface (Section 6.3)
using the GET /logs and GET /logs/{log} requests.

Note: If a computer screen as well as mouse and keyboard are connected to the rc_cube, the log files
can also be download directly from the rc_cube using the Web GUI and a separate USB flash drive on
which the log files can be stored.

Roboception GmbH

Manual: rc_cube

231 Rev: 21.04.0

Status: Apr 15, 2021

8 Troubleshooting
8.1 Camera-image issues
The camera image is too bright

• If the camera is in manual exposure mode, decrease the exposure time (see Parameters, Section
5.1.1.4), or

• switch to auto-exposure mode (see Parameters, Section 5.1.1.4).
The camera image is too dark

• If the camera is in manual exposure mode, increase the exposure time (see Parameters, Section
5.1.1.4), or

• switch to auto-exposure mode (see Parameters, Section 5.1.1.4).
The camera image is too noisy
Large gain factors cause high-amplitude image noise. To decrease the image noise,

• use an additional light source to increase the scene’s light intensity, or

• choose a greater maximal auto-exposure time (see Parameters, Section 5.1.1.4).
The camera image is out of focus

• Check whether the object is too close to the lens and increase the distance between the object

and the lens if it is.

• Check whether the camera lenses are dirty and clean them if they are.

• If none of the above applies, a severe hardware problem might exist. Please contact sup-port (Section 9).
The camera image is blurred
Fast motions in combination with long exposure times can cause blur. To reduce motion blur,

• decrease the motion speed of the camera,

• decrease the motion speed of objects in the field of view of the camera, or

• decrease the exposure time of the camera (see Parameters, Section 5.1.1.4).
The camera image frame rate is too low

• Increase the image frame rate as described in Parameters (Section 5.1.1.4).
• The maximal frame rate of the cameras is 25 Hz.

8.2 Depth/Disparity, error, and confidence image issues
All these guidelines also apply to error and confidence images, because they correspond directly to the

disparity image.

Roboception GmbH

Manual: rc_cube

232 Rev: 21.04.0

Status: Apr 15, 2021

8.2. Depth/Disparity, error, and confidence image issues

The disparity image is too sparse or empty
• Check whether the camera images are well exposed and sharp. Follow the instructions in Camera-image issues (Section 8.1) if applicable.
• Check whether the scene has enough texture (see Stereo matching, Section 5.1.2) and install an
external pattern projector if required.

• Decrease the Minimum Distance (Section 5.1.2.5).
• Increase the Maximum Distance (Section 5.1.2.5).
• Check whether the object is too close to the cameras. Consider the different depth ranges of therc_visard variants.
• Decrease the Minimum Confidence (Section 5.1.2.5).
• Increase the Maximum Depth Error (Section 5.1.2.5).
• Choose a lesser Disparity Image Quality (Section 5.1.2.5). Lower resolution disparity images are
generally less sparse.

The disparity images’ frame rate is too low
• Check and increase the frame rate of the camera images (see Parameters, Section 5.1.1.4). The
frame rate of the disparity image cannot be greater than the frame rate of the camera images.

• Choose a lesser Disparity Image Quality (Section 5.1.2.5).
• Increase the Minimum Distance (Section 5.1.2.5) as much as possible for the application.

The disparity image does not show close objects
• Check whether the object is too close to the cameras. Consider the depth ranges of the rc_visard
variants.

• Decrease the Minimum Distance (Section 5.1.2.5).
The disparity image does not show distant objects

• Increase the Maximum Distance (Section 5.1.2.5).
• Increase the Maximum Depth Error (Section 5.1.2.5).
• Decrease the Minimum Confidence (Section 5.1.2.5).

The disparity image is too noisy
• Increase the Segmentation value (Section 5.1.2.5).
• Increase the Fill-In value (Section 5.1.2.5).

The disparity values or the resulting depth values are too inaccurate
• Decrease the distance between the camera and the scene. Depth-measurement error grows

quadratically with the distance from the cameras.

• Check whether the scene contains repetitive patterns and remove them if it does. They could

cause wrong disparity measurements.

The disparity image is too smooth
• Decrease the Fill-In value (Section 5.1.2.5).

The disparity image does not show small structures
• Decrease the Segmentation value (Section 5.1.2.5).
• Decrease the Fill-In value (Section 5.1.2.5).

Roboception GmbH

Manual: rc_cube

233 Rev: 21.04.0

Status: Apr 15, 2021

8.3. GigE Vision/GenICam issues

8.3 GigE Vision/GenICam issues
No images

• Check that the modules are enabled. See ComponentSelector and ComponentEnable in ImportantGenICam parameters (Section 6.2.2).

Roboception GmbH

Manual: rc_cube

234 Rev: 21.04.0

Status: Apr 15, 2021

9 Contact
9.1 Support
For support issues, please see http://www.roboception.com/support or contact sup-

port@roboception.de.

9.2 Downloads
Software SDKs, etc. can be downloaded from http://www.roboception.com/download.

9.3 Address
Roboception GmbH

Kaflerstrasse 2

81241 Munich

Germany

Web: http://www.roboception.com

Email: info@roboception.de

Phone: +49 89 889 50 79-0

Roboception GmbH

Manual: rc_cube

235 Rev: 21.04.0

Status: Apr 15, 2021

http://www.roboception.com/support
mailto:support@roboception.de
mailto:support@roboception.de
http://www.roboception.com/download
http://www.roboception.com
mailto:info@roboception.de

10 Appendix
10.1 Pose formats
A pose consists of a translation and rotation. The translation defines the shift along the 𝑥, 𝑦 and 𝑧 axes.
The rotation can be defined in many different ways. The rc_cube uses quaternions to define rotations
and translations are given in meters. This is called the XYZ+quaternion format. This chapter explains

the conversion between different common conventions and the XYZ+quaternion format.

It is quite common to define rotations in 3D by three angles that define rotations around the three

coordinate axes. Unfortunately, there are many different ways to do that. The most common conven-

tions are Euler and Cardan angles (also called Tait-Bryan angles). In both conventions, the rotations can

be applied to the previously rotated axis (intrinsic rotation) or to the axis of a fixed coordinate system

(extrinsic rotation).

We use 𝑥, 𝑦 and 𝑧 to denote the three coordinate axes. 𝑥′
, 𝑦′ and 𝑧′ refer to the axes that have been

rotated one time. Similarly, 𝑥′′
, 𝑦′′ and 𝑧′′ are the axes after two rotations.

In the (original) Euler angle convention, the first and the third axis are always the same. The rotation or-

der 𝑧-𝑥′
-𝑧′′ means rotating around the 𝑧-axis, then around the already rotated 𝑥-axis and finally around

the (two times) rotated 𝑧-axis. In the Cardan angle convention, three different rotation axes are used,
e.g. 𝑧-𝑦′-𝑥′′

. Cardan angles are often also just called Euler angles.

For each intrinsic rotation order, there is an equivalent extrinsic rotation order, which is inverted, e.g.

the intrinsic rotation order 𝑧-𝑦′-𝑥′′
is equivalent to the extrinsic rotation order 𝑥-𝑦-𝑧.

Rotations around the 𝑥, 𝑦 and 𝑧 axes can be defined by quaternions as

𝑟𝑥(𝛼) =

⎛⎜⎜⎝
sin 𝛼

2
0
0

cos 𝛼
2

⎞⎟⎟⎠ , 𝑟𝑦(𝛽) =

⎛⎜⎜⎝
0

sin 𝛽
2

0

cos 𝛽
2

⎞⎟⎟⎠ , 𝑟𝑧(𝛾) =

⎛⎜⎜⎝
0
0

sin 𝛾
2

cos 𝛾
2

⎞⎟⎟⎠ ,
or by rotation matrices as

𝑟𝑥(𝛼) =

⎛⎝ 1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

⎞⎠ ,
𝑟𝑦(𝛽) =

⎛⎝ cos𝛽 0 sin𝛽
0 1 0

− sin𝛽 0 cos𝛽

⎞⎠ ,
𝑟𝑧(𝛾) =

⎛⎝ cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎞⎠ .
The extrinsic rotation order 𝑥-𝑦-𝑧 can be computed by multiplying the individual rotations in inverse
order, i.e. 𝑟𝑧(𝛾)𝑟𝑦(𝛽)𝑟𝑥(𝛼).

Based on these definitions, the following sections explain the conversion between common conventions

and the XYZ+quaternion format.

Roboception GmbH

Manual: rc_cube

236 Rev: 21.04.0

Status: Apr 15, 2021

10.1. Pose formats

Note: Please be aware of units for positions and orientations. rc_cube devices always specify po-
sitions in meters, while most robot manufacturers use millimeters or inches. Angles are typically

specified in degrees, but may sometimes also be given in radians.

10.1.1 Rotation matrix and translation vector
A pose can also be defined by a rotation matrix 𝑅 and a translation vector 𝑇 .

𝑅 =

⎛⎝ 𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎞⎠ , 𝑇 =

⎛⎝ 𝑋
𝑌
𝑍

⎞⎠ .

The pose transformation can be applied to a point 𝑃 by

𝑃 ′ = 𝑅𝑃 + 𝑇.

10.1.1.1 Conversion from rotation matrix to quaternion
The conversion from a rotation matrix (with 𝑑𝑒𝑡(𝑅) = 1) to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 can be
done as follows.

𝑥 = sign(𝑟21 − 𝑟12)
1

2

√︀
max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀
max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀
max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑤 =
1

2

√︀
max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

The sign operator returns -1 if the argument is negative. Otherwise, 1 is returned. It is used to recover

the sign for the square root. The max function ensures that the argument of the square root function is

not negative, which can happen in practice due to round-off errors.

10.1.1.2 Conversion from quaternion to rotation matrix
The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 with ||𝑞|| = 1 to a rotation matrix can be done
as follows.

𝑅 = 2

⎛⎝ 1
2 − 𝑦2 − 𝑧2 𝑥𝑦 − 𝑧𝑤 𝑥𝑧 + 𝑦𝑤
𝑥𝑦 + 𝑧𝑤 1

2 − 𝑥2 − 𝑧2 𝑦𝑧 − 𝑥𝑤
𝑥𝑧 − 𝑦𝑤 𝑦𝑧 + 𝑥𝑤 1

2 − 𝑥2 − 𝑦2

⎞⎠

10.1.2 ABB pose format
ABB robots use a position and a quaternion for describing a pose, like rc_cube devices. There is no
conversion of the orientation needed.

10.1.3 FANUC XYZ-WPR format
The pose format that is used by FANUC robots consists of a position 𝑋𝑌 𝑍 in millimeter and an orien-
tation𝑊𝑃𝑅 that is given by three angles in degrees, with𝑊 rotating around 𝑥-axis, 𝑃 rotating around
𝑦-axis and 𝑅 rotating around 𝑧-axis. The rotation order is 𝑥-𝑦-𝑧 and computed by 𝑟𝑧(𝑅)𝑟𝑦(𝑃)𝑟𝑥(𝑊).

Roboception GmbH

Manual: rc_cube

237 Rev: 21.04.0

Status: Apr 15, 2021

10.1. Pose formats

10.1.3.1 Conversion from FANUC-WPR to quaternion
The conversion from the𝑊𝑃𝑅 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 can be done by
first converting all angles to radians

𝑊𝑟 = 𝑊
𝜋

180
,

𝑃𝑟 = 𝑃
𝜋

180
,

𝑅𝑟 = 𝑅
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2)− sin (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2),

𝑦 = cos (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2),

𝑧 = sin (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2)− cos (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2),

𝑤 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2).

10.1.3.2 Conversion from quaternion to FANUC-WPR
The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 with ||𝑞|| = 1 to the 𝑊𝑃𝑅 angles in degrees
can be done as follows.

𝑅 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

𝑃 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑊 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

10.1.4 Kawasaki XYZ-OAT format
The pose format that is used by Kawasaki robots consists of a position 𝑋𝑌 𝑍 and an orientation 𝑂𝐴𝑇
that is given by three angles in degrees, with 𝑂 rotating around 𝑧 axis, 𝐴 rotating around the rotated
𝑦 axis and 𝑇 rotating around the rotated 𝑧 axis. The rotation convention is 𝑧-𝑦′-𝑧′′ (i.e. 𝑧-𝑦-𝑧) and
computed by 𝑟𝑧(𝑂)𝑟𝑦(𝐴)𝑟𝑧(𝑇).

10.1.4.1 Conversion from Kawasaki-OAT to quaternion
The conversion from the 𝑂𝐴𝑇 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 can be done by
first converting all angles to radians

𝑂𝑟 = 𝑂
𝜋

180
,

𝐴𝑟 = 𝐴
𝜋

180
,

𝑇𝑟 = 𝑇
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2)− sin (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2),

𝑦 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2) + sin (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2),

𝑧 = sin (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2) + cos (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2),

𝑤 = cos (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2)− sin (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2).

Roboception GmbH

Manual: rc_cube

238 Rev: 21.04.0

Status: Apr 15, 2021

10.1. Pose formats

10.1.4.2 Conversion from quaternion to Kawasaki-OAT
The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 with ||𝑞|| = 1 to the 𝑂𝐴𝑇 angles in degrees
can be done as follows.

𝑂 = atan2(2(𝑦𝑧 − 𝑤𝑥), 2(𝑥𝑧 + 𝑤𝑦))
180

𝜋

𝐴 = acos(𝑤2 − 𝑥2 − 𝑦2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑦𝑧 + 𝑤𝑥),−2(𝑥𝑧 − 𝑤𝑦))
180

𝜋

10.1.5 KUKA XYZ-ABC format
KUKA robots use the so called XYZ-ABC format. 𝑋𝑌 𝑍 is the position in millimeters. 𝐴𝐵𝐶 are angles
in degrees, with 𝐴 rotating around 𝑧 axis, 𝐵 rotating around 𝑦 axis and 𝐶 rotating around 𝑥 axis. The
rotation convention is 𝑧-𝑦′-𝑥′′

(i.e. 𝑥-𝑦-𝑧) and computed by 𝑟𝑧(𝐴)𝑟𝑦(𝐵)𝑟𝑥(𝐶).

10.1.5.1 Conversion from KUKA-ABC to quaternion
The conversion from the 𝐴𝐵𝐶 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 can be done by
first converting all angles to radians

𝐴𝑟 = 𝐴
𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2)− sin (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2),

𝑦 = cos (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2),

𝑧 = sin (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2)− cos (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2),

𝑤 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2).

10.1.5.2 Conversion from quaternion to KUKA-ABC
The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 with ||𝑞|| = 1 to the 𝐴𝐵𝐶 angles in degrees
can be done as follows.

𝐴 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

10.1.6 Mitsubishi XYZ-ABC format
The pose format that is used by Mitsubishi robots is the same as that for KUKA robots (see KUKA XYZ-ABCformat, Section 10.1.5), except that 𝐴 is a rotation around 𝑥 axis and 𝐶 is a rotation around 𝑧 axis. Thus,
the rotation is computed by 𝑟𝑧(𝐶)𝑟𝑦(𝐵)𝑟𝑥(𝐴).

Roboception GmbH

Manual: rc_cube

239 Rev: 21.04.0

Status: Apr 15, 2021

10.1. Pose formats

10.1.6.1 Conversion from Mitsubishi-ABC to quaternion
The conversion from the 𝐴𝐵𝐶 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 can be done by
first converting all angles to radians

𝐴𝑟 = 𝐴
𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2)− sin (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2),

𝑦 = cos (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2),

𝑧 = sin (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2)− cos (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2),

𝑤 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2).

10.1.6.2 Conversion from quaternion to Mitsubishi-ABC
The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 with ||𝑞|| = 1 to the 𝐴𝐵𝐶 angles in degrees
can be done as follows.

𝐴 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

10.1.7 Universal Robots pose format
The pose format that is used by Universal Robots consists of a position 𝑋𝑌 𝑍 in millimeters and an
orientation in angle-axis format with angle 𝜃 in radians as length of the rotation axis 𝑈 .

𝑉 =

⎛⎝ 𝜃𝑢𝑥

𝜃𝑢𝑦

𝜃𝑢𝑧

⎞⎠
This is called a rotation vector.

10.1.7.1 Conversion from angle-axis format to quaternion
The conversion from a rotation vector 𝑉 to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 can be done as follows.

We first recover the angle 𝜃 in radians from the rotation vector 𝑉 by

𝜃 =
√︁
𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑧 .

Roboception GmbH

Manual: rc_cube

240 Rev: 21.04.0

Status: Apr 15, 2021

10.1. Pose formats

If 𝜃 = 0, then the quaternion is 𝑞 = (0 0 0 1)𝑇 , otherwise it is

𝑥 = 𝑣𝑥
sin(𝜃/2)

𝜃
,

𝑦 = 𝑣𝑦
sin(𝜃/2)

𝜃
,

𝑧 = 𝑣𝑧
sin(𝜃/2)

𝜃
,

𝑤 = cos(𝜃/2).

10.1.7.2 Conversion from quaternion to angle-axis format
The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)𝑇 with ||𝑞|| = 1 to a rotation vector in angle-axis
form can be done as follows.

We first recover the angle 𝜃 in radians from the quaternion by

𝜃 = 2 * acos(𝑤).

If 𝜃 = 0, then the rotation vector 𝑉 = (0 0 0)𝑇 , otherwise it is

𝑣𝑥 = 𝜃
𝑥√

1− 𝑤2
,

𝑣𝑦 = 𝜃
𝑦√

1− 𝑤2
,

𝑣𝑧 = 𝜃
𝑧√

1− 𝑤2
.

Roboception GmbH

Manual: rc_cube

241 Rev: 21.04.0

Status: Apr 15, 2021

HTTP Routing Table

HTTP Routing Table
/logs

GET /logs, 196
GET /logs/{log}, 197

/nodes

GET /nodes, 187
GET /nodes/rc_cadmatch/templates, 128
GET /nodes/rc_cadmatch/templates/{id}, 129
GET /nodes/rc_silhouettematch/templates, 107
GET /nodes/rc_silhouettematch/templates/{id},

107

GET /nodes/{node}, 188
GET /nodes/{node}/parameters, 189
GET /nodes/{node}/parameters/{param}, 191
GET /nodes/{node}/services, 193
GET /nodes/{node}/services/{service}, 194
GET /nodes/{node}/status, 196
PUT /nodes/rc_cadmatch/templates/{id}, 129
PUT /nodes/rc_silhouettematch/templates/{id},

108

PUT /nodes/{node}/parameters, 190
PUT /nodes/{node}/parameters/{param}, 192
PUT /nodes/{node}/services/{service}, 195
DELETE /nodes/rc_cadmatch/templates/{id},

130

DELETE /nodes/rc_silhouettematch/templates/{id},
109

/system

GET /system, 198
GET /system/backup, 199
GET /system/license, 200
GET /system/network, 201
GET /system/network/settings, 201
GET /system/rollback, 203
GET /system/update, 204
POST /system/backup, 199
POST /system/license, 201
POST /system/update, 204
PUT /system/network/settings, 202
PUT /system/reboot, 203
PUT /system/rollback, 203

Roboception GmbH

Manual: rc_cube

242 Rev: 21.04.0

Status: Apr 15, 2021

Index

Index
Symbols

3D coordinates, 28
disparity image, 28

3D modeling, 28
3D object detection, 109

A

AcquisitionAlternateFilter
GenICam, 179

AcquisitionFrameRate
GenICam, 175

AcquisitionMultiPartMode
GenICam, 179

active partition, 230
AdaptiveOut1

auto exposure mode, 23
AprilTag, 52

pose estimation, 54
re-identification, 55
services, 57

auto
exposure, 23

auto exposure, 23, 24
auto exposure mode, 23

AdaptiveOut1, 23
Normal, 23
Out1High, 23

B

backup
settings, 229

BalanceRatio
GenICam, 176

BalanceRatioSelector
GenICam, 176

BalanceWhiteAuto
GenICam, 176

base-plane
SilhouetteMatch, 84

base-plane calibration
SilhouetteMatch, 84

Baseline
GenICam, 180

baseline, 20
Baumer

IpConfigTool, 16
bin picking, 62, 109
BoxPick, 62

filling level, 39
grasp, 63
item model, 63
load carrier, 36
parameters, 66
region of interest, 148
services, 69
status, 69

C

CADMatch, 109
collision check, 113
filling level, 39
grasp points, 110
load carrier, 36
object detection, 111
object template, 110, 111
parameters, 114
preferred orientation, 111
region of interest, 148
services, 116
status, 116
template api, 128

calibration
hand-eye calibration, 135
rectification, 20

camera
frame rate, 22
parameters, 20, 22
Web GUI, 20

camera model, 20
Chunk data

GenICam, 178
collision check, 154
CollisionCheck, 154
compartment

load carrier, 38
ComponentEnable

GenICam, 175
ComponentIDValue

GenICam, 175
ComponentSelector

GenICam, 174
Confidence

GenICam image stream, 182
confidence, 28

minimum, 34
conversions

Roboception GmbH

Manual: rc_cube

243 Rev: 21.04.0

Status: Apr 15, 2021

Index

GenICam image stream, 183

D

data model
REST-API, 205

data-type
REST-API, 205

depth error
maximum, 34

depth image, 28, 28
Web GUI, 29

DepthAcquisitionMode
GenICam, 180

DepthAcquisitionTrigger
GenICam, 180

DepthDoubleShot
GenICam, 180

DepthFill
GenICam, 181

DepthMaxDepth
GenICam, 181

DepthMaxDepthErr
GenICam, 181

DepthMinConf
GenICam, 181

DepthMinDepth
GenICam, 181

DepthQuality
GenICam, 180

DepthSeg
GenICam, 181

DepthSmooth
GenICam, 181

DepthStaticScene
GenICam, 181

detection
load carrier, 38
tag, 51

DHCP, 9
DHCP, 16
discovery GUI, 14
Disparity

GenICam image stream, 182
disparity, 17, 20, 27
disparity error, 28
disparity image, 17, 27

3D coordinates, 28
double_shot, 32
frame rate, 31
parameters, 29
quality, 32
smooth, 33
static_scene, 32
Web GUI, 29

DNS, 9
DOF, 9
double_shot

disparity image, 32

GenICam, 180
download

images, 20
log files, 231
point cloud, 29
settings, 229

E

eki, 218
Error

GenICam image stream, 182
error, 28

hand-eye calibration, 139
exposure, 19

auto, 23
manual, 23

exposure region, 24
exposure time, 20, 24

maximum, 24
ExposureAuto

GenICam, 175
ExposureRegionHeight

GenICam, 179
ExposureRegionOffsetX

GenICam, 179
ExposureRegionOffsetY

GenICam, 179
ExposureRegionWidth

GenICam, 179
ExposureTime

GenICam, 176
ExposureTimeAutoMax

GenICam, 179
external reference frame

hand-eye calibration, 131

F

fill-in, 33
GenICam, 181

filling level
BoxPick, 39
ItemPick, 39
LoadCarrier, 39
SilhouetteMatch, 39

firmware
mender, 229
rollback, 231
update, 229
version, 229

focal length, 20
focal length factor

GenICam, 180
FocalLengthFactor

GenICam, 180
fps, see frame rate
frame rate

camera, 22
disparity image, 31

Roboception GmbH

Manual: rc_cube

244 Rev: 21.04.0

Status: Apr 15, 2021

Index

GenICam, 175

G

Gain
GenICam, 176

gain, 19
gain factor, 20, 24, 25
GenICam, 9
GenICam

AcquisitionAlternateFilter, 179
AcquisitionFrameRate, 175
AcquisitionMultiPartMode, 179
BalanceRatio, 176
BalanceRatioSelector, 176
BalanceWhiteAuto, 176
Baseline, 180
Chunk data, 178
ComponentEnable, 175
ComponentIDValue, 175
ComponentSelector, 174
DepthAcquisitionMode, 180
DepthAcquisitionTrigger, 180
DepthDoubleShot, 180
DepthFill, 181
DepthMaxDepth, 181
DepthMaxDepthErr, 181
DepthMinConf, 181
DepthMinDepth, 181
DepthQuality, 180
DepthSeg, 181
DepthSmooth, 181
DepthStaticScene, 181
double_shot, 180
ExposureAuto, 175
ExposureRegionHeight, 179
ExposureRegionOffsetX, 179
ExposureRegionOffsetY, 179
ExposureRegionWidth, 179
ExposureTime, 176
ExposureTimeAutoMax, 179
fill-in, 181
focal length factor, 180
FocalLengthFactor, 180
frame rate, 175
Gain, 176
Height, 175
HeightMax, 175
LineSelector, 177
LineSource, 177
LineStatus, 177
LineStatusAll, 177
maximum depth error, 181
maximum distance, 181
minimum confidence, 181
minimum distance, 181
PixelFormat, 175, 182
PtpEnable, 177
quality, 180

RcExposureAutoAverageMax, 179
RcExposureAutoAverageMin, 180
Scan3dBaseline, 178
Scan3dCoordinateOffset, 178
Scan3dCoordinateScale, 178
Scan3dDistanceUnit, 177
Scan3dFocalLength, 177
Scan3dInvalidDataFlag, 178
Scan3dInvalidDataValue, 178
Scan3dOutputMode, 177
Scan3dPrinciplePointU, 178
Scan3dPrinciplePointV, 178
segmentation, 181
smooth, 181
static_scene, 181
timestamp, 183
Width, 175
WidthMax, 175

GenICam image stream
Confidence, 182
conversions, 183
Disparity, 182
Error, 182
Intensity, 182
IntensityCombined, 182

GigE, 9
GigE Vision, 9
GigE Vision, see GenICam

IP address, 16
grasp computation, 62, 109
gRPC, 226

H

hand-eye calibration
calibration, 135
error, 139
external reference frame, 131
mounting, 132
parameters, 140
robot frame, 131
slot, 137

Height
GenICam, 175

HeightMax
GenICam, 175

host name, 16

I

image
timestamp, 29, 183

image noise, 24
images

download, 20
inactive partition, 230, 231
installation, 13
Intensity

GenICam image stream, 182
IntensityCombined

Roboception GmbH

Manual: rc_cube

245 Rev: 21.04.0

Status: Apr 15, 2021

Index

GenICam image stream, 182
IP, 9
IP address, 9
IP address, 14

GigE Vision, 16
IpConfigTool

Baumer, 16
ItemPick, 62

filling level, 39
grasp, 63
load carrier, 36
parameters, 66
region of interest, 148
services, 69
status, 69

L

LineSelector
GenICam, 177

LineSource
GenICam, 177

LineStatus
GenICam, 177

LineStatusAll
GenICam, 177

Link-Local, 9
Link-Local, 16
load carrier

BoxPick, 36
compartment, 38
detection, 38
ItemPick, 36
SilhouetteMatch, 36

load carrier detection, 36
LoadCarrier, 36

filling level, 39
parameters, 41
services, 42

log files
download, 231

logs
REST-API, 196

M

MAC address, 9
MAC address, 16
manual exposure, 23, 24
maximum

depth error, 34
exposure time, 24

maximum depth error, 34
GenICam, 181

maximum distance, 33
GenICam, 181

mDNS, 9
mender

firmware, 229
minimum

confidence, 34
minimum confidence, 34

GenICam, 181
minimum distance, 32

GenICam, 181
motion blur, 24
mounting

hand-eye calibration, 132

N

network configuration, 14
node

REST-API, 186
Normal

auto exposure mode, 23
NTP, 9
NTP

synchronization, 228

O

object detection, 83, 109
Out1High

auto exposure mode, 23

P

parameter
REST-API, 186

parameters
camera, 20, 22
disparity image, 29
hand-eye calibration, 140
services, 26

PixelFormat
GenICam, 175, 182

point cloud, 28
download, 29

pose estimation
AprilTag, 54
QR code, 54

PTP
synchronization, 177, 228

PtpEnable
GenICam, 177

Q

QR code, 51
pose estimation, 54
re-identification, 55
services, 57

quality
disparity image, 32
GenICam, 180

R

RcExposureAutoAverageMax
GenICam, 179

RcExposureAutoAverageMin
GenICam, 180

Roboception GmbH

Manual: rc_cube

246 Rev: 21.04.0

Status: Apr 15, 2021

Index

re-identification
AprilTag, 55
QR code, 55

reboot, 231
rectification, 20
Region of Interest, 148
region of interest

services, 149
reset, 14
REST-API, 184

data model, 205
data-type, 205
entry point, 184
logs, 196
node, 186
parameter, 186
services, 187
status value, 186
system, 196
version, 184

restore
settings, 229

robot frame
hand-eye calibration, 131

ROI, 148
rollback

firmware, 231

S

Scan3dBaseline
GenICam, 178

Scan3dCoordinateOffset
GenICam, 178

Scan3dCoordinateScale
GenICam, 178

Scan3dDistanceUnit
GenICam, 177

Scan3dFocalLength
GenICam, 177

Scan3dInvalidDataFlag
GenICam, 178

Scan3dInvalidDataValue
GenICam, 178

Scan3dOutputMode
GenICam, 177

Scan3dPrinciplePointU
GenICam, 178

Scan3dPrinciplePointV
GenICam, 178

SDK, 9
segmentation, 33

GenICam, 181
Semi-Global Matching, see SGM
serial number, 14, 16
services

AprilTag, 57
parameters, 26
QR code, 57

REST-API, 187
tag detection, 57

settings
backup, 229
download, 229
restore, 229
upload, 229

SGM, 9
SGM, 17, 27
silhouette, 83
SilhouetteMatch, 83

base-plane, 84
base-plane calibration, 84
collision check, 89
detection of objects, 86
filling level, 39
grasp points, 85
load carrier, 36
object template, 85
parameters, 89
preferred orientation, 86
region of interest, 85
services, 93
status, 92
template api, 107

slot
hand-eye calibration, 137

smooth
disparity image, 33
GenICam, 181

static_scene
disparity image, 32
GenICam, 181

status value
REST-API, 186

stereo camera, 20
stereo matching, 17
Swagger UI, 213
synchronization

NTP, 228
PTP, 177, 228
time, 177, 228

system
REST-API, 196

T

tag detection, 51
families, 52
pose estimation, 54
re-identification, 55
services, 57

TCP, 9
texture, 27
time

synchronization, 177, 228
timestamp, 19

GenICam, 183
image, 29, 183

Roboception GmbH

Manual: rc_cube

247 Rev: 21.04.0

Status: Apr 15, 2021

Index

U

update
firmware, 229

upload
settings, 229

URI, 9
URL, 9
V

version
firmware, 229
REST-API, 184

W

Web GUI, 171
backup, 229
camera, 20
depth image, 29
disparity image, 29
logs, 231
update, 229

white balance, 25
Width

GenICam, 175
WidthMax

GenICam, 175

X

XYZ+quaternion, 10
XYZABC, 10

Roboception GmbH

Manual: rc_cube

248 Rev: 21.04.0

Status: Apr 15, 2021

rc_cube Accelerator for rc_visard
ASSEMBLY AND OPERATING MANUAL

Roboception GmbH
Kaflerstrasse 2

81241 Munich info@roboception.de

Germany www.roboception.de

Tutorials: http://tutorials.roboception.de

GitHub: https://github.com/roboception

Documentation: http://doc.rc-visard.com

Shop: https://roboception.com/shop

For customer support, contact
+49 89 889 50 790

(09:00-17:00 CET) support@roboception.de

	Introduction
	Overview
	Warranty
	Applicable standards
	Interfaces

	Glossary

	Safety
	General warnings
	Intended use

	Installation
	Installation and configuration
	Software license
	Power up
	Discovery of rc_cube devices
	Resetting configuration

	Network configuration
	Host name
	Automatic configuration (factory default)
	Manual configuration

	Measurement principles
	Stereo vision

	Software modules
	3D camera modules
	Stereo camera
	Stereo matching

	Detection modules
	LoadCarrier
	TagDetect
	ItemPick and BoxPick
	SilhouetteMatch
	CADMatch

	Configuration modules
	Hand-eye calibration
	Region of interest
	CollisionCheck
	IO and Projector Control

	Interfaces
	Web GUI
	Accessing the Web GUI
	Exploring the Web GUI
	Downloading stereo camera images
	Downloading depth images and point clouds

	GigE Vision 2.0/GenICam image interface
	GigE Vision ports
	Important GenICam parameters
	Important standard GenICam features
	Custom GenICam features of the rc_cube
	Chunk data
	Provided image streams
	Image stream conversions

	REST-API interface
	General API structure
	Available resources and requests
	Data type definitions
	Swagger UI

	KUKA Ethernet KRL Interface
	Ethernet connection configuration
	Generic XML structure
	Services
	Parameters
	Example applications

	gRPC image stream interface
	gRPC service definition
	Image stream conversions
	Limitations
	Example client

	Time synchronization
	NTP
	PTP

	Maintenance
	Creating and restoring backups of settings
	Updating the firmware
	Restoring the previous firmware version
	Rebooting the rc_cube
	Updating the software license
	Downloading log files

	Troubleshooting
	Camera-image issues
	Depth/Disparity, error, and confidence image issues
	GigE Vision/GenICam issues

	Contact
	Support
	Downloads
	Address

	Appendix
	Pose formats
	Rotation matrix and translation vector
	ABB pose format
	FANUC XYZ-WPR format
	Kawasaki XYZ-OAT format
	KUKA XYZ-ABC format
	Mitsubishi XYZ-ABC format
	Universal Robots pose format

	HTTP Routing Table
	Index

