
Roboception GmbH | February 2024

rc_cube Edge Computer

ASSEMBLY AND OPERATING MANUAL

Revisions

This product may be modified without notice, when necessary, due to product improvements, modifications, or

changes in specifications. If such modification is made, the manual will also be revised; see revision information.

DOCUMENTATION REVISION 24.01.1-2-g3fc53ce3 Feb 09, 2024

Applicable to rc_cube firmware 24.01.x

MANUFACTURER

Roboception GmbH

Kaflerstrasse 2

81241 Munich

Germany

CUSTOMER SUPPORT: support@roboception.de | +49 89 889 50 79-0 (09:00-17:00 CET)

Please read the operating manual in full and keep it with the product.

COPYRIGHT

This manual and the product it describes are protected by copyright. Unless permitted by German intellectual prop-

erty and related rights legislation, any use and circulation of this content requires the prior consent of Roboception

or the individual owner of the rights. This manual and the product it describes therefore, may not be reproduced

in whole or in part, whether for sale or not, without prior written consent from Roboception.

Information provided in this document is believed to be accurate and reliable. However, Roboception assumes no

responsibility for its use.

Differences may exist between the manual and the product if the product has been modified after the manual’s

edition date. The information contained in this document is subject to change without notice.

Roboception GmbH

Manual: rc_cube

1 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

mailto:support@roboception.de

Contents

Contents

1 Introduction 5

1.1 Overview . 5

1.2 Warranty . 7

1.3 Applicable standards . 8

1.3.1 Interfaces . 8

1.4 Glossary . 9

2 Safety 11

2.1 General warnings . 11

2.2 Intended use . 11

3 Installation 13

3.1 Software license . 13

3.2 Power up . 14

3.3 Discovery of rc_cube devices . 14
3.3.1 Resetting configuration . 14

3.4 Network configuration . 15

3.4.1 Host name . 16

3.4.2 Automatic configuration (factory default) . 16

3.4.3 Manual configuration . 16

3.5 Connection of cameras . 16

3.5.1 Basler blaze sensors . 17

4 Measurement principles 18

4.1 Stereo vision . 18

5 Camera pipelines 20

5.1 Configuration of camera pipelines . 20

5.2 Configuration of connected cameras . 21

6 Software modules 24

6.1 3D camera modules . 25

6.1.1 Camera . 25

6.1.2 Stereo matching . 35

6.1.3 Blaze . 48

6.2 Detection modules . 56

6.2.1 LoadCarrier . 57

6.2.2 TagDetect . 71

6.2.3 ItemPick and BoxPick . 85

6.2.4 SilhouetteMatch . 115

6.2.5 CADMatch . 151

6.3 Configuration modules . 185

6.3.1 Hand-eye calibration . 186

6.3.2 CollisionCheck . 207

6.3.3 Camera calibration . 216

6.3.4 IO and Projector Control . 223

Roboception GmbH

Manual: rc_cube

2 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

Contents

6.4 Database modules . 227

6.4.1 LoadCarrierDB . 227

6.4.2 RoiDB . 235

6.4.3 GripperDB . 242

7 Interfaces 253

7.1 Web GUI . 253

7.1.1 Accessing the Web GUI . 253

7.1.2 Exploring the Web GUI . 254

7.1.3 Web GUI access control . 255

7.1.4 Downloading camera images . 256

7.1.5 Downloading depth images and point clouds . 256

7.2 GigE Vision 2.0/GenICam image interface . 257

7.2.1 GigE Vision ports . 257

7.2.2 Important GenICam parameters . 257

7.2.3 Important standard GenICam features . 257

7.2.4 Custom GenICam features of the rc_cube . 261
7.2.5 Chunk data . 265

7.2.6 Provided image streams . 265

7.2.7 Image stream conversions . 266

7.3 REST-API interface . 267

7.3.1 General API structure . 267

7.3.2 Migration from API version 1 . 269

7.3.3 Available resources and requests . 269

7.3.4 Data type definitions . 300

7.3.5 Swagger UI . 315

7.4 KUKA Ethernet KRL Interface . 319

7.4.1 Ethernet connection configuration . 320

7.4.2 Generic XML structure . 320

7.4.3 Services . 321

7.4.4 Parameters . 325

7.4.5 Migration to firmware version 22.01 . 327

7.4.6 Example applications . 327

7.4.7 Troubleshooting . 327

7.5 gRPC image stream interface . 327

7.5.1 gRPC service definition . 328

7.5.2 Image stream conversions . 330

7.5.3 Example client . 330

7.6 OPC UA interface . 330

7.7 Time synchronization . 330

7.7.1 NTP . 330

7.7.2 PTP . 331

7.7.3 Setting time manually . 331

8 UserSpace 332

8.1 Configuration . 332

8.1.1 Enable UserSpace . 332

8.1.2 Disable UserSpace . 332

8.1.3 Reset UserSpace . 332

8.2 Network access to UserSpace applications . 333

8.3 Examples . 333

8.4 Interfaces . 333

8.5 Restrictions . 333

9 Maintenance 334

9.1 Creating and restoring backups of settings . 334

9.2 Updating the firmware . 334

9.3 Restoring the previous firmware version . 336

9.4 Rebooting the rc_cube . 336

Roboception GmbH

Manual: rc_cube

3 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

Contents

9.5 Updating the software license . 336

9.6 Downloading log files . 336

10 Troubleshooting 337

10.1 Camera-image issues . 337

10.2 Depth/Disparity, error, and confidence image issues . 337

10.3 GigE Vision/GenICam issues . 339

11 Contact 340

11.1 Support . 340

11.2 Downloads . 340

11.3 Address . 340

12 Appendix 341

12.1 Pose formats . 341

12.1.1 Rotation matrix and translation vector . 342

12.1.2 ABB pose format . 342

12.1.3 FANUC XYZ-WPR format . 342

12.1.4 Franka Emika Pose Format . 343

12.1.5 Fruitcore HORST pose format . 345

12.1.6 Kawasaki XYZ-OAT format . 345

12.1.7 KUKA XYZ-ABC format . 346

12.1.8 Mitsubishi XYZ-ABC format . 346

12.1.9 Universal Robots pose format . 347

12.1.10Yaskawa Pose Format . 348

HTTP Routing Table 350

Index 351

Roboception GmbH

Manual: rc_cube

4 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

1 Introduction

Indications in the manual

To prevent damage to the equipment and ensure the user’s safety, this manual indicates each precau-

tion related to safety with Warning. Supplementary information is provided as a Note.

Warning: Warnings in this manual indicate procedures and actions that must be observed to avoid

danger of injury to the operator/user, or damage to the equipment. Software-related warnings in-

dicate procedures that must be observed to avoid malfunctions or unexpected behavior of the soft-

ware.

Note: Notes are used in this manual to indicate supplementary relevant information.

1.1 Overview

The rc_cube is a high-performance 3D-image-processing device. It enhances the computing capabilities
of the Roboception stereo camera rc_visard and supports the Basler blaze camera in an RGB-D setup
and the rc_viscore.
Information about the supported devices are provided in

• rc_visard: https://doc.rc-visard.com
• rc_viscore: https://doc.rc-viscore.com
• blaze: https://www.baslerweb.com/en/products/cameras/3d-cameras/blaze-rgb-d.

Note: Unless specified, the information provided in this manual applies to both the rc_visard 65 andrc_visard 160 versions of the Roboception rc_visard sensor, as well as the rc_visard NG.
Note: The term “blaze” used throughout the manual always refers to the Basler blaze camera in an

RGB-D setup, i.e. the blaze Time-of-Flight camera in combination with the Basler aceA1300 color

camera.

The rc_cube provides real-time camera images and depth images, which can be used to compute 3D
point clouds. Additionally, it provides confidence and error images as quality measures for each image

acquisition. It offers an intuitive web UI (user interface) and a standardized GenICam interface, making

it compatible with all major image processing libraries.

With optionally available software modules the rc_cube provides out-of-the-box solutions for object de-
tection and robotic pick-and-place applications.

The rc_cube is offered in two versions: rc_cube S and rc_cube I.

Roboception GmbH

Manual: rc_cube

5 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://doc.rc-visard.com
https://doc.rc-viscore.com
https://www.baslerweb.com/en/products/cameras/3d-cameras/blaze-rgb-d

1.1. Overview

The rc_cube S is suitable for research, development and testing environments. It supports one rc_visard
without additional hardware. A separate 2.5Gbit switch (not part of the product scope) enables the

support of two rc_visard devices at a time or allows to connect an rc_viscore or a Basler blaze device.
The rc_cube I is intended for operational use in an industrial environment. It supports four rc_visard
cameras, or two rc_viscore or Basler blaze devices without additional hardware.

Fig. 1.1: Schematic representation of the rc_cube and the connected 3D cameras. Unless only a singlerc_visard is connected to the rc_cube S, a separate 2.5Gbit switch is required.

Note: Unless specified, the information provided in this manual applies to both the rc_cube S andrc_cube I versions of the rc_cube.
Note: This manual uses the metric system and mostly uses the units meter and millimeter. Unless

otherwise specified, all dimensions in technical drawings are in millimeters.

Roboception GmbH

Manual: rc_cube

6 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

1.2. Warranty

1.2 Warranty

Any changes or modifications to the hard- and software not expressly approved by Roboception could

void the user’s warranty and guarantee rights.

Warning: The rc_cube utilizes complex hardware and software technology that may behave in a way
not intended by the user. The purchaser must design its application to ensure that any failure or therc_cube does not cause personal injury, property damage, or other losses.

Warning: Do not attempt to take apart, open, service, or modify the rc_cube. Doing so could
present the risk of electric shock or other hazard. Any evidence of any attempt to open and/or

modify the device, including any peeling, puncturing, or removal of any of the labels, will void the

Limited Warranty.

Warning: CAUTION: to comply with the European CE requirement, all cables used to connect this

device must be shielded and grounded. Operation with incorrect cables may result in interference

with other devices or undesired effects of the product.

Note: This product may not be treated as household waste. By ensuring this product is disposed of

correctly, you will help to protect the environment. For more detailed information about the recycling

of this product, please contact your local authority, your household waste disposal service provider,

or the product’s supplier.

Roboception GmbH

Manual: rc_cube

7 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

1.3. Applicable standards

1.3 Applicable standards

1.3.1 Interfaces

The rc_cube supports the following interface standards:

The Generic Interface for Cameras standard is the basis for plug & play handling of cameras and devices.

GigE Vision® is an interface standard for transmitting high-speed video and related control data over

Ethernet networks.

Roboception GmbH

Manual: rc_cube

8 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.genicam.org/
http://www.gigevision.com

1.4. Glossary

1.4 Glossary

DHCP The Dynamic Host Configuration Protocol (DHCP) is used to automatically assign an IP address
to a network device. Some DHCP servers only accept known devices. In this case, an administrator

needs to configure the DHCP server with the fixed MAC address of a device.
DNS

mDNS The Domain Name Server (DNS) manages the host names and IP addresses of all network de-
vices. It is responsible for resolving the host name into the IP address for communication with

a device. A DNS can be configured to get this information automatically when a device appears

on a network or manually by an administrator. In contrast, multicast DNS (mDNS) works without
a central server by querying all devices on a local network each time a host name needs to be

resolved. mDNS is available by default on Linux and Mac operating systems and is used when

‘.local’ is appended to a host name.

DOF The Degrees Of Freedom (DOF) are the number of independent parameters for translation and

rotation. In 3D space, 6 DOF (i.e. three for translation and three rotation) are sufficient to describe

an arbitrary position and orientation.

GenICam GenICam is a generic standard interface for cameras. It serves as a unified interface around

other standards such as GigE Vision, Camera Link, USB, etc. See http://genicam.org for more infor-
mation.

GigE Gigabit Ethernet (GigE) is a networking technology for transmitting data at one gigabit per second.

GigE Vision GigE Vision® is a standard for configuring cameras and transmitting images over a GigE
network link. See http://gigevision.com for more information.

IP

IP address The Internet Protocol (IP) is a standard for sending data between devices in a computer

network. Every device requires an IP address, which must be unique in the network. The IP

address can be configured by DHCP, Link-Local, or manually.
Link-Local Link-Local is a technology where network devices associate themselves with an IP address

from the 169.254.0.0/16 IP range and check if it is unique in the local network. Link-Local can be

used if DHCP is unavailable and manual IP configuration is not or cannot be done. Link-Local is
especially useful for connecting a network device directly to a host computer. By default, Windows

10 reverts automatically to Link-Local if DHCP is unavailable. Under Linux, Link-Local must be

enabled manually in the network manager.

MAC address The Media Access Control (MAC) address is a unique, persistent address for networking

devices. It is also known as the hardware address of a device. In contrast to the IP address, the
MAC address is (normally) permanently given to a device and does not change.

NTP The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network. Basi-

cally a client requests the current time from a server, and uses it to set its own clock.

SDK A Software Development Kit (SDK) is a collection of software development tools or a collection of

software components.

SGM SGM stands for Semi-Global Matching and is a state-of-the-art stereo matching algorithm which

offers short run times and a great accuracy, especially at object borders, fine structures, and in

weakly textured areas.

TCP The Tool Center Point (TCP) is the position of the tool at the end effector of a robot. The position

and orientation of the TCP determines the position and orientation of the tool in 3D space.

URI

URL A Uniform Resource Identifier (URI) is a string of characters identifying resources of the rc_cube’s
REST-API. An example of such a URI is /nodes/rc_camera/parameters/fps, which points to the
fps run-time parameter of the stereo camera module.

Roboception GmbH

Manual: rc_cube

9 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://genicam.org
http://gigevision.com

1.4. Glossary

A Uniform Resource Locator (URL) additionally specifies the full network location and proto-

col, i.e., an exemplary URL to locate the above resource would be https://<ip>/api/v1/nodes/
rc_camera/parameters/fps where <ip> refers to the rc_cube’s IP address.

XYZ+quaternion Format to represent a pose. See Rotation matrix and translation vector (Section 12.1.1)
for its definition.

XYZABC Format to represent a pose. See KUKA XYZ-ABC format (Section 12.1.7) for its definition.

Roboception GmbH

Manual: rc_cube

10 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

2 Safety

Warning: The operator must have read and understood all of the instructions in this manual before

handling the rc_cube product.

Warning: If operating the rc_cubewith rc_visard product(s), the operator must have read and under-
stood all of the safety, installation, and maintenance instructions given in the rc_visardmanual.

Note: The term “operator” refers to anyone responsible for any of the following tasks performed in

conjunction with rc_cube:
• Installation

• Maintenance

• Inspection

• Calibration

• Programming

• Decommissioning

This manual explains the rc_cube’s various components and general operations regarding the product’s
whole life-cycle, from installation through operation to decommissioning.

The drawings and photos in this documentation are representative examples; differences may exist

between them and the delivered product.

2.1 General warnings

Note: Any use of the rc_cube in noncompliance with these warnings is inappropriate and may cause
injury or damage as well as void the warranty.

Warning:

• The rc_cube’s and any related equipment’s safety guidelines must always be satisfied.
• The rc_cube does not fall under the purview of the machinery or medical directives.

2.2 Intended use

The rc_cube is intended to be used in combination with a 3D camera for data acquisition (e.g., stereo
images). It is furthermore intended to process that data using 3D-image processing algorithms to serve

in applications such as object detection or robotic pick-and-place.

Roboception GmbH

Manual: rc_cube

11 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

2.2. Intended use

Warning: The rc_cube is only intended for stationary installation.

Warning: The rc_cube is NOT intended for safety critical applications.

The GigE Vision® industry standard used by the rc_cube does not support authentication and encryp-
tion. All data from and to the device is transmitted without authentication and encryption and could be

monitored or manipulated by a third party. It is the operator’s responsibility to connect the rc_cube only
to a secured internal network.

Warning: The rc_cubemust be connected to secured internal networks.

The rc_cubemay be used only within the scope of its technical specification. Any other use of the product
is deemed unintended use. Roboception will not be liable for any damages resulting from any improper

or unintended use.

Warning: Always comply with local and/or national laws, regulations and directives on automation

safety and general machine safety.

Roboception GmbH

Manual: rc_cube

12 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

3 Installation

Warning: The instructions on Safety (Section 2) related to the rc_cubemust be read and understood
prior to installation.

The rc_cube offers multiple Gigabit Ethernet interfaces:
• One interface labeled “external” for connecting the device to a local computer network, and

• up to four interfaces labeled “sensor<N>” for connecting one or more 3D cameras such as therc_visard or rc_viscore or Basler blaze sensor (see Connection of cameras, Section 3.5).
All other Ethernet ports are disabled.

For commissioning, operation, or troubleshooting the user can connect input devices such as a mouse

and a keyboard as well as a computer screen directly to the rc_cube. However, this is optional as the
functionality of the rc_cube is fully accessible via the local network it is connected to.
Note: If a screen is used on the rc_cube, it must be connected before booting, or the rc_cubemust be
restarted to activate the screen.

3.1 Software license

Every rc_cube device ships with a USB dongle for licensing and protection of the installed software pack-
ages. The purchased software licenses are installed on and are bound to this dongle and its ID.

The functionality of the rc_cube can be enhanced anytime by upgrading the license (Section 9.5), e.g., for
optionally available software modules.

Note: The rc_cube requires to be rebooted whenever the installed licenses have changed.

Note: The dongle ID and the license status can be retrieved via the rc_cube’s various interfaces such
as the System→ Firmware & License page of the Web GUI (Section 7.1).
Note: For the software components to be properly licensed, the USB dongle must be plugged to therc_cube before power up.
Note: The rc_cube requires to be rebooted, whenever the license dongle is plugged to or unplugged
from the device.

Roboception GmbH

Manual: rc_cube

13 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

3.2. Power up

3.2 Power up

Note: The rc_cube I does not come with a power supply. A separate 24V/20Amp (e.g. top hat rail)
power supply is required.

The rc_cube is booted by using the power switch on the device. If a computer screen is connected it will
display the rc_cube’s Web GUI when the boot process is finished.
Note: For successful operation please make sure that the rc_visard being connected to the rc_cube is
powered and booted.

3.3 Discovery of rc_cube devices
Roboception rc_cube devices that are powered up and connected to the local network or directly to a
computer can be found using the standard GigE Vision® discovery mechanism.

Roboception offers the open-source tool rcdiscover-gui, which can be downloaded free of charge
from http://www.roboception.com/download for Windows and Linux. The tool’s Windows version con-

sists of a single executable for Windows 7 and Windows 10, which can be executed without installation.

For Linux an installation package is available for Ubuntu.

At startup, all available GigE Vision® devices – including rc_cube devices – are listed with their names,
serial numbers, current IP addresses, and unique MAC addresses. The discovery tool finds all devices

reachable by global broadcasts. Misconfigured devices that are located in different subnets than the

application host may also be listed. A tickmark in the discovery tool indicates whether devices are

actually reachable via a web browser.

Fig. 3.1: rcdiscover-gui tool for finding connected GigE Vision® devices

After successful discovery, a double click on the device row opens theWeb GUI (Section 7.1) of the device
in the operating system’s default web browser. Google Chrome or Mozilla Firefox are recommended as

web browser.

3.3.1 Resetting configuration

Note: The rcdiscover-gui resetting mechanism is currently not implemented for rc_cube devices.

Roboception GmbH

Manual: rc_cube

14 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.roboception.com/download

3.4. Network configuration

3.4 Network configuration

The rc_cube requires an Internet Protocol (IP) address for communication with other network devices.
The IP address must be unique in the local network, and can be set either manually via a user-

configurable persistent IP address, or automatically via DHCP. If none of these IP configuration methods
apply, the rc_cube falls back to a Link-Local IP address.
The network settings of the rc_visard that is used in combination with the rc_cube are automatically
configured when the rc_visard is connected to the rc_cube.
Note: To not conflict with the internal network between the rc_cube and the connected rc_visard, the
IP address assigned to the rc_cube in the local network must not be in the range of 172.23.42.0/24
and 172.17.0.0/16.

Following the GigE Vision® standard, the priority of IP configuration methods on the rc_cube is
1. Persistent IP (if enabled)

2. DHCP (if enabled)

3. Link-Local

Yes

Yes

Yes
Use Persistent IP

Use DHCP

Successful?

Successful?

No

No
No

Start

End

Yes

No

Persistent IP
enabled?

DHCP enabled?

Use Link-Local
Address

Fig. 3.2: rc_cube’s IP configuration method selection flowchart

Options for changing the rc_cube’s network settings and IP configuration are:
• the System→ Network page of the rc_cube’s Web GUI – if it is reachable in the local network already,
see Web GUI (Section 7.1)

• any configuration tool compatible with GigE Vision® 2.0, or Roboception’s command-line tool
gc_config. Typically, these tools scan for all available GigE Vision® devices on the network. Allrc_cube devices can be uniquely identified by their serial number and MAC address, which are
both printed on the device.

• temporarily changing or completely resetting the rc_cube’s network configuration via Robocep-
tion’s rcdiscover-gui tool, see Discovery of rc_cube devices (Section 3.3)

Roboception GmbH

Manual: rc_cube

15 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

3.5. Connection of cameras

Note: The command-line tool gc_config is part of Roboception’s open-source convenience layer
rc_genicam_api, which can be downloaded free of charge for Windows and Linux from http://www.
roboception.com/download.

3.4.1 Host name

The rc_cube’s host name is based on its serial number, which is printed on the device, and is defined as
rc-cube-<serial number>.

3.4.2 Automatic configuration (factory default)

The Dynamic Host Configuration Protocol (DHCP) is preferred for setting an IP address. If DHCP is active
on the rc_cube, which is the factory default, the device tries to contact a DHCP server at startup and
every time the network cable is being plugged in. If a DHCP server is available on the network, the IP

address is automatically configured.

In some networks, the DHCP server is configured so that it only accepts known devices. In this case,

the Media Access Control address (MAC address), which is printed on the device label, needs to be con-
figured in the DHCP server. At the same time, the rc_cube’s host name can also be set in the Domain
Name Server (DNS). Both MAC address and host name should be sent to the network administrator for
configuration.

If the rc_cube cannot contact a DHCP server within about 15 seconds after startup, or after plugging in
the network cable, it assigns itself a unique IP address. This process is called Link-Local. This option is
especially useful for connecting the rc_cube directly to a computer. The computer must be configured
for Link-Local as well. Link-Local might already be configured as a standard fallback option, as it is

under Windows 10. Other operating systems such as Linux require Link-Local to be explicitly configured

in their network managers.

3.4.3 Manual configuration

Specifying a persistent, i.e. static IP address manually might be useful in some cases. This address is

stored on the rc_cube to be used on device startup or network reconnection. Please make sure the
selected IP address, subnet mask and gateway will not cause any conflicts on the network.

Warning: The IP address must be unique within the local network and within the local network’s

range of valid addresses. Furthermore, the subnet mask must match the local network; otherwise,

the rc_cube may become inaccessible. This can be avoided by using automatic configuration as ex-
plained in Automatic configuration (factory default) (Section 3.4.2).

If this IP address cannot be assigned, e.g. because it is already used by another device in the network,

IP configuration will fall back to automatic configuration via DHCP (if enabled) or a Link-Local address.

3.5 Connection of cameras

Depending on the rc_cube model, two or more 3D cameras can be connected to the Ethernet ports
labelled sensor0, sensor1, etc.
The rc_cube S has one 2.5 Gigabit Ethernet port for connecting up to two sensors, e.g.

• connecting one rc_visard without additional hardware
• connecting two rc_visard devices via a separate 2.5Gbit switch

Roboception GmbH

Manual: rc_cube

16 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.roboception.com/download
http://www.roboception.com/download

3.5. Connection of cameras

• connecting one rc_viscore via a separate 2.5Gbit switch
• connecting one blaze via a separate 2.5Gbit switch

The rc_cube I has four 1 Gigabit Ethernet ports for connecting up to four sensors, e.g.
• connecting up to four rc_visard devices without additional hardware
• connecting up to two rc_viscore devices without additional hardware
• connecting up to two blaze sensors devices without additional hardware

It is also possible to connect 3D cameras of different types to an rc_cube, if the number of Ethernet ports
permits. However, the rc_cube S cannot process more than two sensors at the same time, the rc_cube I
not more than four.

Warning: The rc_viscore or Basler blaze sensor must not be connected via a 1Gbit switch or slower,
as this leads to severe loss of images.

The rc_cube offers up to four software camera pipelines for processing data from the connected sensors.
The configuration of the camera pipelines is explained in Camera pipelines (see Section 4.1).

3.5.1 Basler blaze sensors

After connecting the Basler blaze sensor, it can take up to about one minute until it is found. Upon first

connection of the sensor to the rc_cube, the sensor must be calibrated before it can be used. Calibration
can be done through the Web GUI on the page Camera calibration (Section 6.3.3) under Configuration
in the respective pipeline. After storing the calibration, it will persistently reside on the rc_cube and
automatically be used whenever the sensor is connected to the rc_cube again, regardless of the port or
pipeline.

Roboception GmbH

Manual: rc_cube

17 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

4 Measurement principles

The rc_cube is a high-performance 3D-image-processing device that is used in combination one or more
3D cameras such as Roboception’s 3D camera rc_visard. Together, they provide rectified camera, dispar-
ity, confidence, and error images, which allow the viewed scene’s depth values along with their uncer-

tainties to be computed.

In the following, the underlying measurement principles are explained in more detail.

4.1 Stereo vision

In stereo vision, 3D information about a scene can be extracted by comparing two images taken from
different viewpoints. The main idea behind using a camera pair for measuring depth is the fact that

object points appear at different positions in the two camera images depending on their distance from

the camera pair. Very distant object points appear at approximately the same position in both images,

whereas very close object points occupy different positions in the left and right camera image. The

object points’ displacement in the two images is called disparity. The larger the disparity, the closer the
object is to the camera. The principle is illustrated in Fig. 4.1.

Image plane

Left camera Right camera

Left image

Right image

d1 d2

Fig. 4.1: Sketch of the stereo-vision principle: The more distant object (black) exhibits a smaller disparity

𝑑2 than that of the close object (gray), 𝑑1.

Stereo vision is a form of passive sensing, meaning that it emits neither light nor other signals to mea-

sure distances, but uses only light that the environment emits or reflects. Thus, the Roboception prod-

ucts utilizing this sensing principle can work indoors and outdoors and multiple devices can work to-

gether without interferences.

To compute the 3D information, the stereo matching algorithm must be able to find corresponding

object points in the left and right camera images. For this, the algorithm requires texture, meaning

changes in image intensity values due to patterns or the objects’ surface structure, in the images. Stereo

Roboception GmbH

Manual: rc_cube

18 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

4.1. Stereo vision

matching is not possible for completely untextured regions, such as a flat white wall without any visible

surface structure. The stereomatchingmethod used by the rc_cube is SGM (Semi-Global Matching), which
provides the best trade-off between runtime and accuracy, even for fine structures.

The following software modules are required to compute 3D information:

• Camera: This module is responsible for capturing synchronized image pairs and transforming
them into images approaching those taken by an ideal camera (rectification).

• Stereo matching: This module computes disparities for the rectified stereo image pair usingSGM (Section 6.1.2).

Roboception GmbH

Manual: rc_cube

19 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

5 Camera pipelines

The rc_cube supports multiple cameras at the same time. For this, it offers up to four camera pipelines
that can be configured by the user.

A camera pipeline contains several software modules which are responsible for acquiring data of the

camera connected to that pipeline, performing detections or configuring modules used in this pipeline,

e.g. by hand-eye calibration.

The rc_cube supports cameras of type rc_visard, rc_viscore and blaze. The type of the corresponding
camera pipeline has to be configured to match the connected device.

5.1 Configuration of camera pipelines

The camera pipelines can be configured via the Web GUI (Section 7.1) under System→ Camera Pipelines.
This page shows the running pipelines with their types and the connected devices.

Fig. 5.1: Example of the Camera Pipelines page on an rc_cube with two running pipelines of type
rc_visard

Clicking on Configure Camera Pipelines allows to configure the number and type of running pipelines as
shown in the next figure.

Note: The rc_cube I provides four camera pipelines, the rc_cube S two.

Roboception GmbH

Manual: rc_cube

20 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

5.2. Configuration of connected cameras

Fig. 5.2: Configuring the camera pipelines

The type of a running pipeline can be changed by selecting a different type in the drop down field. A

running pipeline can be removed by clicking Remove Pipeline. Only pipeline 0 can never be removed,
because this is the primary pipeline. Clicking on + Add Pipeline allows to choose the type for the new
pipeline and creates a new pipeline of the chosen type. Once the pipelines are configured as desired,

clicking Apply Changes & Reboot will apply the new configuration and immediately reboot the rc_cube.

5.2 Configuration of connected cameras

A pipeline of a certain type can only discover devices of the same type. That means, a pipeline of type

rc_visard can only connect to an rc_visard. In case multiple cameras of the same type are connected
to the rc_cube, the user can set a device filter to choose a specific camera for each pipeline. The current
device filter value is displayed for each running pipeline as shown in Fig. 5.1. By default, the device filter

is set to *, which means that any device matching the pipeline type will automatically be connected, but
only if there is a unique match. Otherwise, no camera will be connected to that pipeline and an error

will be shown.

To adjust the device filter and select the camera to be connected to a pipeline, click on Configure CameraConnection on the Camera Pipelines page, or select the corresponding pipeline in the menu, e.g. un-
der System → Camera Pipelines → Pipeline 1. This will show the current device filter value and more
information about the connected camera.

Roboception GmbH

Manual: rc_cube

21 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

5.2. Configuration of connected cameras

Fig. 5.3: Configuring the camera connection of pipeline 1

Clicking Choose Camera opens a dialog to edit the device filter.

Fig. 5.4: Choosing the camera by setting a device filter

This dialog also shows a list of all discovered devices matching the pipeline type and highlights the ones

that match the current value entered for the device filter. It also indicates if the devices are already in

use in a different pipeline. Device filters can be selected by clicking on an Interface, Name or Serial of the
desired device in the list. The following table shows possible device filter values.

Roboception GmbH

Manual: rc_cube

22 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

5.2. Configuration of connected cameras

Table 5.1: Possible device filter values

Device filter Description

* selects any device matching the pipeline type

sensor<n>:* selects any device connected via the sensor<n> interface that matches the

pipeline type

<name> selects the device by the user-defined name

<serial> selects the device by the full serial number

sensor<n>:<serial> selects the device connected via the sensor<n> interface with the given serial

sensor<n>:<name> selects the device connected via the sensor<n> interface with the given

user-defined name

if empty, no camera will be connected

By pressing Save, the entered device filter is applied and a cameramatching the device filter is connected
to this pipeline, if possible. Changing the device filter does not require a reboot of the rc_cube.

Roboception GmbH

Manual: rc_cube

23 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6 Software modules

The rc_cube comes with several on-board software modules, each of which corresponds to a certain
functionality and can be interfaced via its respective node in the REST-API interface (Section 7.3).
The rc_cube offers the possibility to connect multiple 3D cameras such as the rc_visard. The image
data from each device is processed in a separate camera pipeline, which consists of several different
software modules. The modules inside each pipeline are pipeline specific, which means that they can

have different parameters for each pipeline. The modules running outside the pipelines are global and

provide data for all modules in all pipelines. An overview is given in Fig. 6.1.

rc_cube

3D Camera
Modules

Detection
Modules

Database
Modules

Pipeline 0

3D Camera
Modules

Detection
Modules

Configuration
Modules3D Camera 0

3D Camera 1
3D Camera

Modules
Detection
Modules

Pipeline 1

3D Camera
Modules

Detection
Modules

Configuration
Modules

… Pipeline 2 ...

… Pipeline 3 ...

3D Camera 2

3D Camera 3

GigE Vision

gRPC (Port 50052)

EKI (Port 7000)

gRPC (Port 50051)

EKI (Port 7001)

gRPC (Port 50053)
EKI (Port 7002)

gRPC (Port 50054)
EKI (Port 7003)

Rest API

Fig. 6.1: Overview of the pipeline-specific and global software modules on the rc_cube

The rc_cube’s pipeline-specific software modules can be divided into
• 3D camera modules (Section 6.1) which acquire image pairs and compute 3D depth information

such as disparity, error, and confidence images, and are also accessible via the rc_cube’s GigEVision/GenICam interface,
• Detection modules (Section 6.2) which provide a variety of detection functionalities, such as

grasp point computation and object detection,

• Configuration modules (Section 6.3) which enable the user to perform calibrations and configure
the rc_cube for specific applications.

The modules that are global for all camera pipelines running on the rc_cube are the
• Database modules (Section 6.4) which enable the user to configure global data available to all

other modules, such as load carriers, regions of interest and grippers.

Roboception GmbH

Manual: rc_cube

24 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

6.1 3D camera modules

The rc_cube’s 3D camera software consists of the following modules:
• Camera (rc_camera, Section 6.1.1) acquires image pairs and performs planar rectification for us-

ing the camera as a measurement device. Images are provided both for further internal

processing by other modules and for external use as GenICam image streams.
• Stereo matching (rc_stereomatching, Section 6.1.2) uses the rectified stereo image pairs of the

connected stereo camera, e.g. the rc_visard, to compute 3D depth information such as dis-
parity, error, and confidence images. These are provided as GenICam streams, too.

• Blaze (rc_blaze, Section 6.1.3) provides 3D depth information such as disparity, error, and confi-
dence images of the connected Basler blaze RGB-D camera. These are provided as GenICam

streams, too.

These modules are pipeline specific, which means that they run inside each camera pipeline. Changes

to their settings or parameters only affect the corresponding pipeline and have no influence on the

other camera pipelines running on the rc_cube.
Note: The Stereo Matching module is only available in camera pipelines of type rc_visard or
rc_viscore. The Blaze module is only available in camera pipelines of type blaze.

The Camera and the Stereo matching modules, which acquire image pairs and compute 3D depth in-
formation such as disparity, error, and confidence images, are also accessible via the rc_cube’s GigEVision/GenICam interface.

6.1.1 Camera

The camera module is a base module which is available on every rc_cube and is responsible for image
acquisition and rectification. It provides various parameters, e.g. to control exposure and frame rate.

6.1.1.1 Rectification

To simplify image processing, the camera module rectifies all camera images based on the camera

calibration. This means that lens distortion is removed and the principal point is located exactly in the

middle of the image.

The model of a rectified camera is described with just one value, which is the focal length. The rc_cube
reports a focal length factor via its various interfaces. It relates to the image width for supporting

different image resolutions. The focal length 𝑓 in pixels can be easily obtained by multiplying the focal
length factor by the image width in pixels.

In case of a stereo camera, rectification also aligns images such that an object point is always projected

onto the same image row in both images. The cameras’ optical axes become exactly parallel.

Note: If a blaze sensor is used instead of a stereo camera, only one camera image is provided.
However, the image is rectified, i.e. lens distortion is removed and the principal point is in the image

center.

6.1.1.2 Viewing and downloading images

The rc_cube provides the time-stamped, rectified images over the GenICam interface (see Provided im-age streams, Section 7.2.6). Live streams of the images are provided with reduced quality in the WebGUI (Section 7.1).
The Web GUI also provides the possibility to download a snapshot of the current scene as a .tar.gz file

as described in Downloading camera images (Section 7.1.4).

Roboception GmbH

Manual: rc_cube

25 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

6.1.1.3 Parameters

The camera software module is called rc_camera and is represented by the Camera page in the desired
pipeline in the Web GUI (Section 7.1). The user can change the camera parameters there, or directly
via the REST-API (REST-API interface, Section 7.3) or GigE Vision (GigE Vision 2.0/GenICam image interface,
Section 7.2).

Note: Camera parameters cannot be changed via the Web GUI or REST-API if rc_cube is used via GigE
Vision.

Parameter overview

Note: The minimum, maximum and default values in the parameter table below show the values of

the rc_visard. The values will be different for other sensors.
This module offers the following run-time parameters:

Roboception GmbH

Manual: rc_cube

26 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

Table 6.1: The rc_cameramodule’s run-time parameters

Name Type Min Max Default Description

exp_auto bool false true true Switching between auto and

manual exposure (deprecated,

please use exp_control

instead)

exp_auto_average_max float64 0.0 1.0 0.75 Maximum average intensity in

Auto exposure mode

exp_auto_average_min float64 0.0 1.0 0.25 Minimum average intensity in

Auto exposure mode

exp_auto_mode string - - Normal Auto-exposure mode:

[Normal, Out1High,

AdaptiveOut1]

exp_control string - - Auto Exposure control mode:

[Manual, Auto, HDR]

exp_height int32 0 959 0 Height of auto exposure

region. 0 for whole image.

exp_max float64 6.6e-05 0.018 0.018 Maximum exposure time in

seconds in Auto exposure

mode

exp_offset_x int32 0 1279 0 First column of auto exposure

region

exp_offset_y int32 0 959 0 First row of auto exposure

region

exp_value float64 6.6e-05 0.018 0.005 Exposure time in seconds in

Manual exposure mode

exp_width int32 0 1279 0 Width of auto exposure

region. 0 for whole image.

fps float64 1.0 25.0 25.0 Frames per second in Hertz

gain_value float64 0.0 18.0 0.0 Gain value in decibel if not in

Auto exposure mode

gamma float64 0.1 10.0 1.0 Gamma factor

wb_auto bool false true true Switching white balance on

and off (only for color camera)

wb_ratio_blue float64 0.125 8.0 2.4 Blue to green balance ratio if

wb_auto is false (only for color

camera)

wb_ratio_red float64 0.125 8.0 1.2 Red to green balance ratio if

wb_auto is false (only for color

camera)

Roboception GmbH

Manual: rc_cube

27 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

Description of run-time parameters

Fig. 6.2: The Web GUI’s Camera page

fps (FPS)

This value is the cameras’ frame rate (fps, frames per second), which determines the upper

frequency at which depth images can be computed. This is also the frequency at which the

Roboception GmbH

Manual: rc_cube

28 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

rc_cube delivers images via GigE Vision. Reducing this frequency also reduces the network
bandwidth required to transmit the images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?fps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?fps=<value>

gamma (Gamma)

The gamma value determines the mapping of perceived light to the brightness of a pixel. A

gamma value of 1 corresponds to a linear relationship. Lower gamma values let dark image

parts appear brighter. A value around 0.5 corresponds to human vision.

Not available for blaze sensor.

Note: For a pipeline of type rc_visard this value can only be changed when the con-
nected rc_visard has at least firmware version 22.07. Otherwise the gamma value will
always be 1.0.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gamma=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gamma=<value>

exp_control (Exposure Auto, HDR orManual)

The exposure control mode can be set to Auto, HDR orManual. This replaces the deprecatedexp_auto parameter.
Auto: This is the default mode in which the exposure time and gain factor is chosen automat-
ically to correctly expose the image. The last automatically determined exposure and gain

values are set into exp_value and gain_value when switching auto-exposure off.

HDR: The HDR mode computes high-dynamic-range images by combining images with dif-
ferent exposure times to avoid under-exposed and over-exposed areas. This decreases the

frame rate and is only suitable for static scenes.

Manual: In the manual exposure mode the exposure time and gain are kept fixed indepen-
dent of the resulting image brightness.

Note: For a pipeline of type rc_visard the HDR mode is only available when the con-
nected rc_visard has at least firmware version 23.01.
Not available for blaze sensor.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH

Manual: rc_cube

29 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_control=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_control=<value>

exp_auto (deprecated)

This parameter is deprecated and will be removed in a future release. Please useexp_control.
This value can be set to true for auto-exposure mode, or to false for manual exposure mode.
In manual exposure mode, the chosen exposure time is kept, even if the images are overex-

posed or underexposed. In auto-exposure mode, the exposure time and gain factor is cho-

sen automatically to correctly expose the image. The last automatically determined expo-

sure and gain values are set into exp_value and gain_value when switching auto-exposure
off.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_auto=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_auto=<value>

exp_auto_mode (Auto Exposure Mode)

The auto exposure mode can be set to Normal, Out1High or AdaptiveOut1. These modes are
relevant when the rc_cube is used with an external light source or projector connected to therc_visard’s or rc_viscore’s GPIOOut1, which can be controlled by the IOControl module (IO andProjector Control, Section 6.3.4).
Normal: All images are considered for exposure control, except if the IOControl mode for
GPIO Out1 is ExposureAlternateActive: then only images where GPIO Out1 is HIGH will be
considered, since these images may be brighter in case GPIO Out1 is used to trigger an

external light source.

Out1High: This exposure mode adapts the exposure time using only images with GPIO Out1
HIGH. Images where GPIO Out1 is LOW are not considered at all, which means, that the

exposure time does not change when only images with Out1 LOW are acquired. This mode

is recommended for using the acquisition_mode SingleFrameOut1 in the stereo matching
module as described in Stereo Matching Parameters (Section 6.1.2.5) and having an external
projector connected to GPIO Out1, when changes in the brightness of the scene should only

be considered when Out1 is HIGH. This is the case, for example, when a bright part of the

robot moves through the field of view of the camera just before a detection is triggered,

which should not affect the exposure time.

AdaptiveOut1: This exposure mode uses all camera images and tracks the exposure dif-
ference between images with GPIO Out1 LOW and HIGH. While the IOControl mode for

GPIO Out1 is LOW, the images are under-exposed by this exposure difference to avoid over-

exposure for when GPIO Out1 triggers an external projector. The resulting exposure dif-

ference is given as Out1 Reduction below the live images. This mode is recommended for
using the acquisition_mode SingleFrameOut1 in the stereo matching module as described
in Stereo Matching Parameters (Section 6.1.2.5) and having an external projector connected to

Roboception GmbH

Manual: rc_cube

30 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

GPIO Out1, when changes in the brightness of the scene should be considered at all times.

This is the case, for example, in applications where the external lighting changes.

Not available for blaze sensor.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_auto_mode=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_auto_mode=<value>

exp_max (Max Exposure)

This value is the maximal exposure time in auto-exposure mode in seconds. The actual ex-

posure time is adjusted automatically so that the images are exposed correctly. If the maxi-

mum exposure time is reached, but the images are still underexposed, the rc_cube stepwise
increases the gain to increase the images’ brightness. Limiting the exposure time is useful for

avoiding or reducing motion blur during fast movements. However, higher gain introduces

noise into the image. The best trade-off depends on the application.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_max=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_max=<value>

exp_auto_average_max (Max Brightness) and exp_auto_average_min (Min Brightness)

The auto-exposure tries to set the exposure time and gain factor such that the average inten-

sity (i.e. brightness) in the image or exposure region is between amaximum and aminimum.

The maximum brightness will be used if there is no saturation, e.g. no over-exposure due to

bright surfaces or reflections. In case of saturation, the exposure time and gain factor are

reduced, but only down to the minimum brightness.

The maximum brightness has precedence over the minimum brightness parameter. If the

minimum brightness is larger than the maximum brightness, the auto-exposure always tries

to make the average intensity equal to the maximum brightness.

The current brightness is always shown in the status bar below the images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_auto_

→˓average_max|exp_auto_average_min>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_auto_average_max|exp_auto_

→˓average_min>=<value>

Roboception GmbH

Manual: rc_cube

31 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

exp_offset_x, exp_offset_y, exp_width, exp_height (Exposure Region)

These values define a rectangular region in the left rectified image for limiting the area used

for computing the auto exposure. The exposure time and gain factor of both images are

chosen to optimally expose the defined region. This can lead to over- or underexposure of

image parts outside the defined region. If either the width or height is 0, then the whole left

and right images are considered by the auto exposure function. This is the default.

The region is visualized in the Web GUI by a rectangle in the left rectified image. It can be

defined using the sliders or by selecting it in the image after pressing the button Select
Region in Image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_offset_

→˓x|exp_offset_y|exp_width|exp_height>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_offset_x|exp_offset_y|exp_

→˓width|exp_height>=<value>

exp_value (Exposure)

This value is the exposure time in manual exposure mode in seconds. This expo-

sure time is kept constant even if the images are underexposed.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_value=<value>

gain_value (Gain)

This value is the gain factor in decibel that can be set in manual exposure mode. Higher gain

factors reduce the required exposure time but introduce noise.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gain_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gain_value=<value>

Roboception GmbH

Manual: rc_cube

32 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

wb_auto (White Balance Auto orManual)

This value can be set to true for automatic white balancing or false for manually setting the
ratio between the colors using wb_ratio_red and wb_ratio_blue. The last automatically
determined ratios are set into wb_ratio_red and wb_ratio_blue when switching automatic
white balancing off. White balancing is without function for monochrome cameras and will

not be displayed in the Web GUI in this case.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?wb_auto=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?wb_auto=<value>

wb_ratio_blue and wb_ratio_red (Blue | Green and Red | Green)

These values are used to set blue to green and red to green ratios for manual white balance.

White balancing is without function for monochrome cameras and will not be displayed in

the Web GUI in this case.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<wb_ratio_

→˓blue|wb_ratio_red>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_red>=
→˓<value>

These parameters are also available over the GenICam interface with slightly different names and partly

with different units or data types (see GigE Vision 2.0/GenICam image interface, Section 7.2).
6.1.1.4 Status values

This module reports the following status values:

Roboception GmbH

Manual: rc_cube

33 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

Table 6.2: The rc_cameramodule’s status values

Name Description

baseline Stereo baseline 𝑡 in meters
brightness Not available for blaze sensor. Current brightness of the image as value

between 0 and 1

color 0 for monochrome cameras, 1 for color cameras

exp Current exposure time in seconds. This value is shown below the image

preview in the Web GUI as Exposure (ms).
focal Focal length factor normalized to an image width of 1

fps Current frame rate of the camera images in Hertz. This value is shown

in the Web GUI below the image preview as FPS (Hz).
gain Current gain factor in decibel. This value is shown in the Web GUI

below the image preview as Gain (dB).
gamma Current gamma value.

height Height of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the second part of Resolution (px).
out1_reduction Not available for blaze sensor. Fraction of reduction (0.0 - 1.0) of

brightness for images with GPIO Out1=LOW in

exp_auto_mode=AdaptiveOut1 or exp_auto_mode=Out1High. This

value is shown in the Web GUI below the image preview as Out1Reduction (%).
params_override_active 1 if parameters are temporarily overwritten by a running calibration

process

test 0 for live images and 1 for test images

width Width of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the first part of Resolution (px).

6.1.1.5 Services

The camera module offers the following services.

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

34 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

(continued from previous page)

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.1.2 Stereo matching

The stereo matching module is a base module which is available on every rc_cube and uses the rectified
stereo-image pair to compute disparity, error, and confidence images. It also offers a service tomeasure

depth in a specified image region (see Services, Section 6.1.2.7).
Note: This module is not available in camera pipelines of type blaze.

To compute full resolution disparity, error and confidence images, an additional StereoPlus license (Sec-
tion 9.5) is required. This license is included in every rc_cube purchased after 31.01.2019.
6.1.2.1 Computing disparity images

After rectification, an object point is guaranteed to be projected onto the same pixel row in both left

and right image. That point’s pixel column in the right image is always lower than or equal to the same

point’s pixel column in the left image. The term disparity signifies the difference between the pixel

columns in the right and left images and expresses the depth or distance of the object point from the

camera. The disparity image stores the disparity values of all pixels in the left camera image.

The larger the disparity, the closer the object point. A disparity of 0 means that the projections of the

object point are in the same image column and the object point is at infinite distance. Often, there are

pixels for which disparity cannot be determined. This is the case for occlusions that appear on the left

sides of objects, because these areas are not seen from the right camera. Furthermore, disparity cannot

be determined for textureless areas. Pixels for which the disparity cannot be determined are marked as

invalid with the special disparity value of 0. To distinguish between invalid disparity measurements and

disparity measurements of 0 for objects that are infinitely far away, the disparity value for the latter is

set to the smallest possible disparity value above 0.

To compute disparity values, the stereo matching algorithm has to find corresponding object points in

the left and right camera images. These are points that represent the same object point in the scene.

For stereo matching, the rc_cube uses SGM (Semi-Global Matching), which offers quick run times and
great accuracy, especially at object borders, fine structures, and in weakly textured areas.

A key requirement for any stereo matching method is the presence of texture in the image, i.e., image-

intensity changes due to patterns or surface structure within the scene. In completely untextured re-

gions such as a flat white wall without any structure, disparity values can either not be computed or

the results are erroneous or have low confidence (see Confidence and error images, Section 6.1.2.3). The
texture in the scene should not be an artificial, repetitive pattern, since those structures may lead to

ambiguities and hence to wrong disparity measurements.

When working with poorly textured objects or in untextured environments, a static artificial texture can

be projected onto the scene using an external pattern projector. This pattern should be random-like

and not contain repetitive structures. The rc_cube provides the IOControl module (see IO and ProjectorControl, Section 6.3.4) as optional software module which can control a pattern projector connected to
the sensor.

Roboception GmbH

Manual: rc_cube

35 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

6.1.2.2 Computing depth images and point clouds

The following equations show how to compute an object point’s actual 3D coordinates 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 in the

camera coordinate frame from the disparity image’s pixel coordinates 𝑝𝑥, 𝑝𝑦 and the disparity value 𝑑 in
pixels:

𝑃𝑥 =
𝑝𝑥 · 𝑡
𝑑

𝑃𝑦 =
𝑝𝑦 · 𝑡
𝑑

𝑃𝑧 =
𝑓 · 𝑡
𝑑

,

(6.1)

where 𝑓 is the focal length after rectification in pixels and 𝑡 is the stereo baseline in meters, which
was determined during calibration. These values are also transferred over the GenICam interface (seeCustom GenICam features of the rc_cube, Section 7.2.4).
Note: The rc_cube reports a focal length factor via its various interfaces. It relates to the image width
for supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtained by
multiplying the focal length factor by the image width in pixels.

Please note that equations (6.1) assume that the coordinate frame is centered in the principal point that

is typically in the center of the image, and 𝑝𝑥, 𝑝𝑦 refer to the middle of the pixel, i.e. by adding 0.5 to the
integer pixel coordinates. The following figure shows the definition of the image coordinate frame.

Fig. 6.3: The image coordinate frame’s origin is defined to be at the image center – 𝑤 is the image width
and ℎ is the image height.

The same equations, but with the corresponding GenICam parameters are given in Image stream con-versions (Section 7.2.7).
The set of all object points computed from the disparity image gives the point cloud, which can be used

for 3D modeling applications. The disparity image is converted into a depth image by replacing the

disparity value in each pixel with the value of 𝑃𝑧 .

Note: Roboception provides software and examples for receiving disparity images from the rc_cube
via GigE Vision and computing depth images and point clouds. See http://www.roboception.com/

download.

6.1.2.3 Confidence and error images

For each disparity image, additionally an error image and a confidence image are provided, which give

uncertainty measures for each disparity value. These images have the same resolution and the same

frame rate as the disparity image. The error image contains the disparity error 𝑑𝑒𝑝𝑠 in pixels correspond-
ing to the disparity value at the same image coordinates in the disparity image. The confidence image

contains the corresponding confidence value 𝑐 between 0 and 1. The confidence is defined as the prob-
ability of the true disparity value being within the interval of three times the error around the measured

disparity 𝑑, i.e., [𝑑− 3𝑑𝑒𝑝𝑠, 𝑑+ 3𝑑𝑒𝑝𝑠]. Thus, the disparity image with error and confidence values can be

Roboception GmbH

Manual: rc_cube

36 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.roboception.com/download
http://www.roboception.com/download

6.1. 3D camera modules

used in applications requiring probabilistic inference. The confidence and error values corresponding

to an invalid disparity measurement will be 0.

The disparity error 𝑑𝑒𝑝𝑠 (in pixels) can be converted to a depth error 𝑧𝑒𝑝𝑠 (in meters) using the focal
length 𝑓 (in pixels), the baseline 𝑡 (in meters), and the disparity value 𝑑 (in pixels) of the same pixel in the
disparity image:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑓 · 𝑡

𝑑2
. (6.2)

Combining equations (6.1) and (6.2) allows the depth error to be related to the depth:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑃𝑧

2

𝑓 · 𝑡
.

With the focal lengths and baselines of the different camera models and the typical combined calibra-

tion and stereo matching error 𝑑𝑒𝑝𝑠 of 0.25 pixels, the depth accuracy can be visualized as shown below.

6.1.2.4 Viewing and downloading images and point clouds

The rc_cube provides time-stamped disparity, error, and confidence images over the GenICam interface
(see Provided image streams, Section 7.2.6). Live streams of the images are provided with reduced quality
on the Depth Image page in the desired pipeline of the Web GUI (Section 7.1).
The Web GUI also provides the possibility to download a snapshot of the current scene containing the

depth, error and confidence images, as well as a point cloud in ply format as described in Downloadingdepth images and point clouds (Section 7.1.5).
6.1.2.5 Parameters

The stereo matching module is called rc_stereomatching in the REST-API and it is represented by theDepth Image page in the desired pipeline in the Web GUI (Section 7.1). The user can change the stereo
matching parameters there, or use the REST-API (REST-API interface, Section 7.3) or GigE Vision (GigEVision 2.0/GenICam image interface, Section 7.2).
Parameter overview

This module offers the following run-time parameters:

Roboception GmbH

Manual: rc_cube

37 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

Table 6.3: The rc_stereomatchingmodule’s run-time parameters

Name Type Min Max Default Description

acquisition_mode string - - Continuous Acquisition mode:

[Continuous,

SingleFrame,

SingleFrameOut1]

double_shot bool false true false Combination of

disparity images from

two subsequent stereo

image pairs

exposure_adapt_timeout float64 0.0 2.0 0.0 Maximum time in

seconds to wait after

triggering in

SingleFrame modes

until auto exposure has

finished adjustments

fill int32 0 4 3 Disparity tolerance for

hole filling in pixels

maxdepth float64 0.1 100.0 100.0 Maximum depth in

meters

maxdeptherr float64 0.01 100.0 100.0 Maximum depth error

in meters

minconf float64 0.5 1.0 0.5 Minimum confidence

mindepth float64 0.1 100.0 0.1 Minimum depth in

meters

quality string - - High Quality: [Low, Medium,

High, Full]. Full requires

‘stereo_plus’ license.

seg int32 0 4000 200 Minimum size of valid

disparity segments in

pixels

smooth bool false true true Smoothing of disparity

image (requires

‘stereo_plus’ license)

static_scene bool false true false Accumulation of

images in static scenes

to reduce noise

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Depth Image page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order

they appear in the Web GUI:

Roboception GmbH

Manual: rc_cube

38 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

Fig. 6.4: The Web GUI’s Depth Image page

acquisition_mode (Acquisition Mode)

The acquisition mode can be set to Continuous, SingleFrame (Single) or
SingleFrameOut1 (Single + Out1). The first one is the default, which performs
stereo matching continuously according to the user defined frame rate and the

available computation resources. The two other modes perform stereo matching

upon each click of the Acquire button. The Single + Out1mode additionally controls
an external projector that is connected to GPIOOut1 (IO and Projector Control, Sec-
tion 6.3.4). In this mode, out1_mode of the IOControl module is automatically set to
ExposureAlternateActive upon each trigger call and reset to Low after receiving
images for stereo matching.

Roboception GmbH

Manual: rc_cube

39 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

Note: The Single + Out1mode can only change the out1_mode if the IOControl
license is available on the rc_cube.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓acquisition_mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?acquisition_mode=<value>

exposure_adapt_timeout (Exposure Adaptation Timeout)

The exposure adaptation timeout gives themaximum time in seconds that the sys-

tem will wait after triggering an image acquisition until auto exposure has found

the optimal exposure time. This timeout is only used in SingleFrame (Single) or
SingleFrameOut1 (Single + Out1) acquisition mode with auto exposure active. This
value should be increased in applications with changing lighting conditions, when

images are under- oder overexposed and the resulting disparity images are too

sparse. In these cases multiple images are acquired until the auto-exposure mode

has adjusted or the timeout is reached, and only then the actual image acquisition

is triggered.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓exposure_adapt_timeout=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?exposure_adapt_timeout=
→˓<value>

quality (Quality)

Disparity images can be computed in different resolutions: Full (full image res-
olution), High (half of the full image resolution), Medium (quarter of the full image
resolution) and Low (sixth of the full image resolution). Full resolution matching
(Full) is only possible with a valid StereoPlus license. The lower the resolution,
the higher the frame rate of the disparity image. Please note that the frame rate

of the disparity, confidence, and error images will always be less than or equal

to the camera frame rate. In case the projector is in ExposureAlternateActive
mode, the frame rate of the images can be at most half of the camera frame rate.

If full resolution is selected, the depth range is internally limited due to limited on-

board memory resources. It is recommended to adjust mindepth and maxdepth to
the depth range that is required by the application.

Roboception GmbH

Manual: rc_cube

40 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

Table 6.4: Depth image resolutions (pixel) depending on the cho-

sen quality

Connected Camera Full Quality High Quality Medium Quality Low Quality

rc_visard 1280 x 960 640 x 480 320 x 240 214 x 160

rc_visard_ng 1440 x 1080 720 x 540 360 x 270 240 x 180

rc_viscore 4112 x 3008 2056 x 1504 1028 x 752 686 x 502

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓quality=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?quality=<value>

double_shot (Double-Shot)

Enabling this option will lead to denser disparity images, but will increase processing time.

For scenes recorded with a projector in Single + Out1 acquisition mode, or in continuous
acquisition mode with the projector in ExposureAlternateActive mode, holes caused by
reflections of the projector are filled with depth information computed from the images

without projector pattern. In this case, the double_shot parameter must only be enabled if
the scene does not change during the acquisition of the images.

For all other scenes, holes are filled with depth information computed from a downscaled

version of the same image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?double_

→˓shot=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?double_shot=<value>

static_scene (Static)

This option averages 8 consecutive camera images before matching. This reduces noise,

which improves the stereo matching result. However, the latency increases significantly.

The timestamp of the first image is taken as timestamp of the disparity image. This option

only affects matching in full or high quality. It must only be enabled if the scene does not

change during the acquisition of the 8 images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?static_

→˓scene=<value>

API version 1 (deprecated)

Roboception GmbH

Manual: rc_cube

41 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?static_scene=<value>

mindepth (Minimum Distance)

The minimum distance is the smallest distance from the camera at which measurements

should be possible. Larger values implicitly reduce the disparity range, which also reduces

the computation time. The minimum distance is given in meters.

Depending on the capabilities of the sensor, the actual minimum distance can be higher

than the user setting. The actual minimum distance will be reported in the status values.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓mindepth=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?mindepth=<value>

maxdepth (Maximum Distance)

The maximum distance is the largest distance from the camera at which measurements

should be possible. Pixels with larger distance values are set to invalid in the disparity image.

Setting this value to its maximum permits values up to infinity. The maximum distance is

given in meters.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓maxdepth=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?maxdepth=<value>

smooth (Smoothing)

This option activates advanced smoothing of disparity values. It is only available with a valid

StereoPlus license.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?smooth=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?smooth=<value>

Roboception GmbH

Manual: rc_cube

42 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

fill (Fill-in)

This option is used to fill holes in the disparity image by interpolation. The fill-in value is the

maximum allowed disparity step on the border of the hole. Larger fill-in values can decrease

the number of holes, but the interpolated values can have larger errors. At most 5% of pixels

are interpolated. Interpolation of small holes is preferred over interpolation of larger holes.

The confidence for the interpolated pixels is set to a low value of 0.5. A fill-in value of 0

switches hole filling off.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?fill=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?fill=<value>

seg (Segmentation)

The segmentation parameter is used to set the minimum number of pixels that a connected

disparity region in the disparity image must fill. Isolated regions that are smaller are set to

invalid in the disparity image. The value is related to the high quality disparity image with half

resolution and does not have to be scaled when a different quality is chosen. Segmentation

is useful for removing erroneous disparities. However, larger values may also remove real

objects.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?seg=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?seg=<value>

minconf (Minimum Confidence)

The minimum confidence can be set to filter potentially false disparity measurements. All

pixels with less confidence than the chosen value are set to invalid in the disparity image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓minconf=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?minconf=<value>

Roboception GmbH

Manual: rc_cube

43 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

maxdeptherr (Maximum Depth Error)

The maximum depth error is used to filter measurements that are too inaccurate. All pixels

with a larger depth error than the chosen value are set to invalid in the disparity image. The

maximum depth error is given in meters. The depth error generally grows quadratically with

an object’s distance from the camera (see Confidence and error images, Section 6.1.2.3).
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓maxdeptherr=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?maxdeptherr=<value>

The same parameters are also available over the GenICam interface with slightly different names and

partly with different data types (see GigE Vision 2.0/GenICam image interface, Section 7.2).
6.1.2.6 Status values

This module reports the following status values:

Table 6.5: The rc_stereomatchingmodule’s status values

Name Description

fps Actual frame rate of the disparity, error, and confidence images. This value

is shown in the Web GUI below the image preview as FPS (Hz).
latency Time in seconds between image acquisition and publishing of disparity

image

width Current width of the disparity, error, and confidence images in pixels

height Current height of the disparity, error, and confidence images in pixels

mindepth Actual minimum working distance in meters

maxdepth Actual maximum working distance in meters

time_matching Time in seconds for performing stereo matching using SGM on the GPU
time_postprocessing Time in seconds for postprocessing the matching result on the CPU

reduced_depth_range Indicates whether the depth range is reduced due to computation

resources

6.1.2.7 Services

The stereo matching module offers the following services.

acquisition_trigger

Signals the module to perform stereo matching of the next available images, if the parame-

ter acquisition_mode is set to SingleFrame or SingleFrameOut1.

Details

An error is returned if the acquisition_mode is set to Continuous.

This service can be called as follows.

API version 2

Roboception GmbH

Manual: rc_cube

44 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/services/
→˓acquisition_trigger

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/acquisition_trigger

Request

This service has no arguments.

Response

Possible return codes are shown below.

Table 6.6: Possible return codes of the acquisition_trigger ser-
vice call.

Code Description

0 Success

-8 Triggering is only possible in SingleFrame acquisition mode

101 Trigger is ignored, because there is a trigger call pending

102 Trigger is ignored, because there are no subscribers

The definition for the response with corresponding datatypes is:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

measure_depth

Computes the average, minimum and maximum depth in a given region of interest, which

can optionally be subdivided into cells.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/services/measure_

→˓depth

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/measure_depth

Request

Optional arguments:

region_of_interest_2d_id is the ID of the 2D region of interest (see RoiDB, Sec-
tion 6.4.2) that will be used for the depth measurements.

region_of_interest_2d is an alternative on-the-fly definition of the region of in-
terest for the depth measurements. This region of interest will be ignored if a

Roboception GmbH

Manual: rc_cube

45 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

region_of_interest_2d_id is given. The region of interest is always defined on
the camera image with full resolution, where offset_x and offset_y are the pixel
coordinates of the upper left corner of the rectangular region of interest, and

width and height are the width and height of it in pixels. Default is a region of
interest covering the whole image.

cell_count is the number of cells in x and y direction into which the region of
interest is divided. If not given, a cell count of 0, 0 is assumed and only the overall

values will be computed. The total cell count computed as product of the x and y

values must not exceed 100.

data_acquisition_mode: if set to CAPTURE_NEW (default), a new image dataset will
be used for the measurement. If set to USE_LAST, the previous dataset will be used
for the measurement.

pose_frame controls whether the coordinates of the depth measurement are re-
turned in the camera or external frame, if a hand-eye calibration is available (seeHand-eye calibration, Section 6.3.1). The default is camera.

Potentially required arguments:

robot_pose is the pose of the robot at the time of the depth measurement. It is
required when the external pose frame is used and the camera is robot mounted.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"cell_count": {
"x": "uint32",
"y": "uint32"

},
"data_acquisition_mode": "string",
"pose_frame": "string",
"region_of_interest_2d": {
"height": "uint32",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

},
"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

Table 6.7: return_code values of the measure_depth service call

value Description

0 measurement successful

-1 an invalid argument was given

Roboception GmbH

Manual: rc_cube

46 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

cells contains the depth measurements of all requested cells. The cells are always ordered
from left to right and top to bottom in image coordinates.

overall contains the depth measurements of the full region of interest.

coverage is a number between 0 and 1 which reflects the fraction of valid depth measure-
ments inside the respective cell. A coverage of 0 means that the cell is invalid.

min_z and max_z return the 3D coordinate of the point in the cell with the minimum and
maximum depth value, respectively. The depth value is the z coordinate in the camera coor-

dinate system.

For mean_z, the x and y coordinates define the point in the middle of the cell and the z
coordinate is determined by the average of all depth value measurements in the cell.

region_of_interest_2d returns the definition of the requested region of interest for the
depth measurement.

If pose_frame is external, then the x, y and z coordinates are returned in the robot coordi-
nate system.

The definition for the response with corresponding datatypes is:

{
"name": "measure_depth",
"response": {
"cell_count": {
"x": "uint32",
"y": "uint32"

},
"cells": [
{

"coverage": "float64",
"max_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"mean_z": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_z": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

],
"overall": {

"coverage": "float64",
"max_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"mean_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"min_z": {

"x": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

47 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

(continued from previous page)

"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"region_of_interest_2d": {
"height": "uint32",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/services/reset_

→˓defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.1.3 Blaze

The blaze module is a base module which is available on every rc_cube and provides disparity, confi-
dence and error images of a connected Basler blaze camera in an RGB-D setup, i.e. the blaze Time-of-
Roboception GmbH

Manual: rc_cube

48 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

Flight (ToF) camera in combination with the Basler aceA1300 color camera.

After connecting the Basler blaze sensor to the rc_cube, it can take up to about one minute until it is
found. Upon first connection of the sensor to the rc_cube, the sensor must be calibrated before it can
be used. Calibration can be done through the Web GUI on the page Camera calibration (Section 6.3.3)
under Configuration in the respective pipeline. After storing the calibration, it will persistently reside on
the rc_cube and automatically be used whenever the sensor is connected to the rc_cube again, regardless
of the port or pipeline.

The blaze module only runs in camera pipelines of type blaze.

6.1.3.1 Viewing and downloading images and point clouds

The rc_cube provides time-stamped disparity, error, and confidence images over the GenICam interface
(see Provided image streams, Section 7.2.6). Live streams of the images are provided with reduced quality
on the Depth Image page in the desired pipeline of the Web GUI (Section 7.1).
The Web GUI also provides the possibility to download a snapshot of the current scene containing the

depth, error and confidence images, as well as a point cloud in ply format as described in Downloadingdepth images and point clouds (Section 7.1.5).
6.1.3.2 Parameters

The blaze module is called rc_blaze in the REST-API and it is represented by the Depth Image page in
the desired pipeline in the Web GUI (Section 7.1), when a Basler blaze camera is connected and running
in the corresponding pipeline. The user can change the blaze parameters there, or use the REST-API
(REST-API interface, Section 7.3).
Parameter overview

This module offers the following run-time parameters:

Roboception GmbH

Manual: rc_cube

49 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

Table 6.8: The rc_blazemodule’s run-time parameters

Name Type Min Max Default Description

acquisition_mode string - - Continuous Acquisition mode:

[Continuous,

SingleFrame]

ambiguity_filter bool false true true Ambiguity filter

ambiguity_filter_threshold int32 0 255 204 Ambiguity filter

threshold

exp_value float64 0.0001 0.001 0.001 Exposure time of ToF

camera

fill int32 0 4 3 Tolerance for hole filling

in pixels

gamma_correction bool false true true Gamma correction

maxdepth float64 0.01 10.0 10.0 Maximum depth in

meters

minconf float64 0.0 1.0 0.00488 Minimum confidence

mindepth float64 0.1 10.0 0.1 Minimum depth in

meters

outlier_removal bool false true true Outlier removal

outlier_removal_threshold int32 0 8 5 Outlier removal

threshold

seg int32 0 4000 200 Minimum size of valid

segments in pixels

spatial_filter bool false true true Spatial filter

temporal_filter bool false true true Temporal filter

temporal_filter_strength int32 50 255 200 Temporal filter strength

thermal_drift_correction bool false true true Thermal drift correction

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Depth Image page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order

they appear in the Web GUI:

exp_value (Exposure Time)

This parameter is the exposure time of the blaze camera in seconds. It controls
for how long the photosensitive cells are exposed to light. If the operating mode

is changed, the exposure time is set to the recommended default value. Reducing

the exposure time may reduce measurement accuracy and is only recommended

when the image is overexposed.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?exp_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?exp_value=<value>

Roboception GmbH

Manual: rc_cube

50 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

acquisition_mode (Acquisition Mode)

The acquisition mode can be set to Continuous (Continuous) or SingleFrame (Sin-gle). The first one is the default and continuously provides depth images. In single
frame mode, images are only captured when the Acquire button is clicked.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?acquisition_

→˓mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?acquisition_mode=<value>

mindepth (Minimum Distance)

The minimum distance is the smallest distance from the camera at which measurements

should be possible. The minimum distance is given in meters.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?mindepth=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?mindepth=<value>

maxdepth (Maximum Distance)

The maximum distance is the largest distance from the camera at which measurements

should be possible. Pixels with larger distance values are set to invalid in the disparity image.

The maximum distance is given in meters.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?maxdepth=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?maxdepth=<value>

fill (Fill-in)

This option is used to fill holes in the disparity image by interpolation. The fill-in value is the

maximum allowed disparity step on the border of the hole. Larger fill-in values can decrease

the number of holes, but the interpolated values can have larger errors. At most 5% of pixels

are interpolated. Interpolation of small holes is preferred over interpolation of larger holes.

The confidence for the interpolated pixels is set to a low value of 0.5. A fill-in value of 0

switches hole filling off.

Via the REST-API, this parameter can be set as follows.

Roboception GmbH

Manual: rc_cube

51 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?fill=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?fill=<value>

seg (Segmentation)

The segmentation parameter is used to set the minimum number of pixels that a connected

disparity region in the disparity image must fill. Isolated regions that are smaller are set to

invalid in the disparity image. Segmentation is useful for removing erroneous disparities.

However, larger values may also remove real objects.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?seg=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?seg=<value>

minconf (Minimum Confidence)

The minimum confidence can be set to filter potentially false disparity measurements. All

pixels with less confidence than the chosen value are set to invalid in the disparity image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?minconf=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?minconf=<value>

spatial_filter (Spatial Filter)

This parameter enables the spatial noise filter. The spatial noise filter uses the values of

neighboring pixels to filter out noise in an image. It is based on the raw data of the image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?spatial_filter=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?spatial_filter=<value>

Roboception GmbH

Manual: rc_cube

52 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

temporal_filter (Temporal Filter)

This parameter enables the temporal noise filter. The temporal noise filter uses the values

of the same pixel at different points in time to filter out noise in an image. It is based on the

depth data of the image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?temporal_filter=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?temporal_filter=<value>

temporal_filter_strength (Strength)

This parameter represents the strength of the temporal filter. The higher the value, the

stronger the filter. High values may cause motion artifacts, while low values reduce the

efficacy of the filter.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?temporal_filter_

→˓strength=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?temporal_filter_strength=<value>

outlier_removal (Outlier Removal)

This parameter enables the outlier removal filter. It removes pixels that differ significantly

from their local environment.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?outlier_removal=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?outlier_removal=<value>

outlier_removal_threshold (Threshold)

This parameter determines the strength of the outlier removal filter. The higher the value,

the more outliers will be removed.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH

Manual: rc_cube

53 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?outlier_removal_

→˓threshold=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?outlier_removal_threshold=<value>

ambiguity_filter (Ambiguity Filter)

This parameter enables the ambiguity filter. The ambiguity filter removes pixels whose

depth data is ambiguous. In certain demanding scenes, e.g., because of stray light or multi-

path effects, detection may fail. In this case, the filter should be disabled.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?ambiguity_

→˓filter=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?ambiguity_filter=<value>

ambiguity_filter_threshold (Threshold)

This parameter determines the strength of the ambiguity filter. The higher the value, the

stronger the filter. Higher values increase the reliability of the filter.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?ambiguity_

→˓filter_threshold=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?ambiguity_filter_threshold=<value>

gamma_correction (Gamma Correction)

This parameter enables gamma correction on the intensity image, which is a nonlinear op-

eration to lighten the dark regions of the image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?gamma_

→˓correction=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?gamma_correction=<value>

Roboception GmbH

Manual: rc_cube

54 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.1. 3D camera modules

thermal_drift_correction (Thermal Drift Correction)

This parameter activates the correction of the thermal drift.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/parameters?thermal_drift_

→˓correction=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/parameters?thermal_drift_correction=<value>

6.1.3.3 Status values

This module reports the following status values:

Table 6.9: The rc_blazemodule’s status values

Name Description

fps Actual frame rate of the disparity, error, and confidence images. This value is shown in

the Web GUI below the image preview as FPS (Hz).
latency Time in seconds between image acquisition and publishing of disparity image

width Current width of the disparity, error, and confidence images in pixels

height Current height of the disparity, error, and confidence images in pixels

mindepth Actual minimum working distance in meters

maxdepth Actual maximum working distance in meters

6.1.3.4 Services

The Blaze module offers the following services.

acquisition_trigger

Signals the module to acquire a depth image, if the parameter acquisition_mode is set to
SingleFrame.

Details

An error is returned if the acquisition_mode is set to Continuous.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/services/acquisition_

→˓trigger

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/services/acquisition_trigger

Request

This service has no arguments.

Response

Possible return codes are shown below.

Roboception GmbH

Manual: rc_cube

55 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Table 6.10: Possible return codes of the acquisition_trigger ser-
vice call.

Code Description

0 Success

-8 Triggering is only possible in SingleFrame acquisition mode

101 Trigger is ignored, because there is a trigger call pending

102 Trigger is ignored, because there are no subscribers

The definition for the response with corresponding datatypes is:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_blaze/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_blaze/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2 Detection modules

The rc_cube offers software modules for different detection applications:

Roboception GmbH

Manual: rc_cube

56 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

• LoadCarrier (rc_load_carrier, Section 6.2.1) allows detecting load carriers and their filling lev-
els.

• TagDetect (rc_april_tag_detect and rc_qr_code_detect, Section 6.2.2) allows the detection
of AprilTags and QR codes, as well as the estimation of their poses.

• ItemPick and BoxPick (rc_itempick and rc_boxpick, Section 6.2.3) provides an out-of-the-box
perception solution for robotic pick-and-place applications of unknown objects or boxes.

• SilhouetteMatch (rc_silhouettematch, Section 6.2.4) provides an object detection solution for
objects placed on a plane or stacked planar objects.

• CADMatch (rc_cadmatch, Section 6.2.5) provides an object detection solution for 3D objects.
These modules are pipeline specific, which means that they run inside each camera pipeline. Changes

to their settings or parameters only affect the corresponding pipeline and have no influence on the

other camera pipelines running on the rc_cube.
These modules are optional and can be activated by purchasing a separate license (Section 9.5).

6.2.1 LoadCarrier

6.2.1.1 Introduction

The LoadCarrier module allows the detection of load carriers, which is usually the first step when objects

or grasp points inside a bin should be found. The models of the load carriers to be detected have to be

defined in the LoadCarrierDB (Section 6.4.1) module.
The LoadCarrier module is an optional on-board module of the rc_cube and is licensed with any of the
modules ItemPick and BoxPick (Section 6.2.3) or CADMatch (Section 6.2.5) and SilhouetteMatch (Section
6.2.4). Otherwise it requires a separate LoadCarrier license (Section 9.5) to be purchased.
Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-

tive camera pipeline and have no influence on other pipelines running on the rc_cube.

6.2.1.2 Detection of load carriers

The load carrier detection algorithm detects load carriers that match a specific load carrier model, which

must be defined in the LoadCarrierDB (Section 6.4.1) module. The load carrier model is referenced by
its ID, which is passed to the load carrier detection. The detection of a load carrier is based on the

detection of its rectangular rim. For this, it uses lines detected in the left camera image and the depth

values of the load carrier rim. Thus, the rim should form a contrast to the background and the disparity

image must be dense on the rim.

If multiple load carriers of the specified load carrier ID are visible in the scene, all of themwill be detected

and returned by the load carrier detection.

By default, when assume_gravity_aligned is true and gravity measurements are available, the algo-
rithm searches for load carriers whose rim planes are perpendicular to the measured gravity vector. To

detect tilted load carriers, assume_gravity_aligned must be set to false or the load carrier’s approxi-
mate orientation must be specified as pose and the pose_type should be set to ORIENTATION_PRIOR.

Load carriers can be detected at a distance of up to 3 meters from the camera.

When a 3D region of interest (see RoiDB, Section 6.4.2) is used to limit the volume in which load carriers
should be detected, only the load carriers’ rims must be fully included in the region of interest.

The detection algorithm returns the poses of the load carriers’ origins (see Load carrier definition, Section
6.4.1.2) in the desired pose frame.

The detection functionality also determines if the detected load carriers are overfilled, which means,
that objects protrude from the plane defined by the load carrier’s outer part of the rim.

Roboception GmbH

Manual: rc_cube

57 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

x
z

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

y
z

rim
_th

ick
ne
ss
.y

rim_thickness.x

x
y

Fig. 6.5: Load carrier models and reference frames

6.2.1.3 Detection of filling level

The LoadCarrier module offers the detect_filling_level service to compute the filling level of all
detected load carriers.

The load carriers are subdivided into a configurable number of cells in a 2D grid. The maximum number

of cells is 10x10. For each cell, the following values are reported:

• level_in_percent: minimum,maximum andmean cell filling level in percent from the load carrier
floor. These values can be larger than 100% if the cell is overfilled.

• level_free_in_meters: minimum, maximum and mean cell free level in meters from the load
carrier rim. These values can be negative if the cell is overfilled.

• cell_size: dimensions of the 2D cell in meters.

• cell_position: position of the cell center in meters (either in camera or external frame, seeHand-eye calibration, Section 6.2.1.4). The z-coordinate is on the level of the load carrier rim.
• coverage: represents the proportion of valid pixels in this cell. It varies between 0 and 1 with steps
of 0.1. A low coverage indicates that the cell contains several missing data (i.e. only a few points

were actually measured in this cell).

These values are also calculated for the whole load carrier itself. If no cell subdivision is specified, only

the overall filling level is computed.

Fig. 6.6: Visualizations of the load carrier filling level: overall filling level without grid (left), 4x3 grid

(center), 8x8 grid (right). The load carrier content is shown in a green gradient from white (on the load

carrier floor) to dark green. The overfilled regions are visualized in red. Numbers indicate cell IDs.

Roboception GmbH

Manual: rc_cube

58 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

6.2.1.4 Interaction with other modules

Internally, the LoadCarrier module depends on, and interacts with other on-board modules as listed

below.

Note: All changes and configuration updates to these modules will affect the performance of the

LoadCarrier module.

Stereo camera and Stereo matching

The LoadCarrier module makes internally use of the following data:

• Rectified images from the Cameramodule (rc_camera, Section 6.1.1);
• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,
Section 6.1.2).

All processed images are guaranteed to be captured after the module trigger time.

IO and Projector Control

In case the rc_cube is used in conjunction with an external random dot projector and the IO and ProjectorControl module (rc_iocontrol, Section 6.3.4), it is recommended to connect the projector to GPIO Out
1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matching pa-rameters, Section 6.1.2.5), so that on each image acquisition trigger an image with and without projector
pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.3.4.1).
In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images (see Stereo camera parameters, Section 6.1.1.3).
No additional changes are required to use the LoadCarrier module in combination with a random dot

projector.

Hand-eye calibration

In case the camera has been calibrated to a robot, the loadcarrier module can automatically provide

poses in the robot coordinate frame. For the loadcarrier nodes’ Services (Section 6.2.1.7), the frame of
the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no
prior knowledge about the pose of the camera in the environment is required. This means that

the configured load carriers move with the camera. It is the user’s responsibility to update the

configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-

board Hand-eye calibration module (Section 6.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is

needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

Roboception GmbH

Manual: rc_cube

59 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

6.2.1.5 Parameters

The LoadCarrier module is called rc_load_carrier in the REST-API and is represented in the WebGUI (Section 7.1)in the desired pipeline under Modules → LoadCarrier. The user can explore and con-
figure the LoadCarrier module’s run-time parameters, e.g. for development and testing, using the Web

GUI or the REST-API interface (Section 7.3).
Parameter overview

Note: The default values in the parameter table below show the values of the rc_visard. The values
can be different for other sensors.

This module offers the following run-time parameters:

Table 6.11: The rc_load_carriermodule’s run-time parameters

Name Type Min Max Default Description

assume_gravity_aligned bool false true true When true, only

gravity-aligned load

carriers are detected, if

gravity measurement is

available.

crop_distance float64 0.0 0.05 0.005 Safety margin in meters

by which the load carrier

inner dimensions are

reduced to define the

region of interest for

detection

min_plausibility float64 0.0 0.99 0.8 Indicates how much of

the plane surrounding the

load carrier rim must be

free to count as valid

detection

model_tolerance float64 0.003 0.025 0.008 Indicates how much the

estimated load carrier

dimensions are allowed to

differ from the load

carrier model dimensions

in meters

Description of run-time parameters

Each run-time parameter is represented by a row on the LoadCarrier Settings section of the Web GUI’sLoadCarrier page under Modules. The name in the Web GUI is given in brackets behind the parameter
name and the parameters are listed in the order they appear in the Web GUI. The parameters are

prefixed with load_carrier_ when they are used outside the rc_load_carrier module from another
detection module using the REST-API interface (Section 7.3).
assume_gravity_aligned (Assume Gravity Aligned)

If this parameter is set to true, then only load carriers without tilt will be detected. This

can speed up the detection. If this parameter is set to false, tilted load carriers will also be

detected.

This parameter is ignored for load carriers with an orientation prior.

Roboception GmbH

Manual: rc_cube

60 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Note: Gravity alignment is only available for pipelines of type rc_visard. The gravity vector is esti-
mated from linear acceleration readings from the on-board IMU.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?assume_gravity_

→˓aligned=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?assume_gravity_aligned=<value>

model_tolerance (Model Tolerance)

indicates how much the estimated load carrier dimensions are allowed to differ from the

load carrier model dimensions in meters.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?model_

→˓tolerance=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?model_tolerance=<value>

crop_distance (Crop Distance)

sets the safety margin in meters by which the load carrier’s inner dimensions are reduced to

define the region of interest for detection (ref. Fig. 6.38).

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?crop_

→˓distance=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?crop_distance=<value>

min_plausibility (Minimum Plausibility):

The minimum plausibility defines how much of the plane around the load carrier rim must

at least be free to count as valid detection. Increase the minimal plausibility to reject false

positive detections and decrease the value in case a clearly visible load carrier cannot be

detected.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?min_

→˓plausibility=<value>

Roboception GmbH

Manual: rc_cube

61 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?min_plausibility=<value>

6.2.1.6 Status values

The LoadCarrier module reports the following status values:

Table 6.12: The rc_load_carriermodule’s status values

Name Description

data_acquisition_time Time in seconds required to acquire image pair

last_timestamp_processed The timestamp of the last processed image pair

load_carrier_detection_time Processing time of the last detection in seconds

6.2.1.7 Services

The user can explore and call the LoadCarrier module’s services, e.g. for development and testing,

using the REST-API interface (Section 7.3) or the rc_cube Web GUI (Section 7.1) on the LoadCarrier page
under Modules.
The LoadCarrier module offers the following services.

detect_load_carriers

Triggers a load carrier detection as described in Detection of load carriers (Section 6.2.1.2).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/detect_

→˓load_carriers

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_load_carriers

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.1.4).
load_carrier_ids: IDs of the load carriers which should be detected. Currently
only one ID can be specified.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.1.4).
Optional arguments:

region_of_interest_id: ID of the 3D region of interest where to search for the
load carriers.

region_of_interest_2d_id: ID of the 2D region of interest where to search for
the load carriers.

Note: Only one type of region of interest can be set.

Roboception GmbH

Manual: rc_cube

62 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"load_carrier_ids": [
"string"

],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_load_carriers",
"response": {
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

63 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

detect_filling_level

Triggers a load carrier filling level detection as described in Detection of filling level (Section
6.2.1.3).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/detect_

→˓filling_level

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_filling_level

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.1.4).
load_carrier_ids: IDs of the load carriers which should be detected. Currently
only one ID can be specified.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.1.4).
Optional arguments:

filling_level_cell_count: Number of cells in the filling level grid.

region_of_interest_id: ID of the 3D region of interest where to search for the
load carriers.

Roboception GmbH

Manual: rc_cube

64 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

region_of_interest_2d_id: ID of the 2D region of interest where to search for
the load carriers.

Note: Only one type of region of interest can be set.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"filling_level_cell_count": {
"x": "uint32",
"y": "uint32"

},
"load_carrier_ids": [

"string"
],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers and their filling levels.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_filling_level",
"response": {

"load_carriers": [
{

"cells_filling_levels": [
{
"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

65 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
}

],
"filling_level_cell_count": {

"x": "uint32",
"y": "uint32"

},
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overall_filling_level": {

"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {

"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH

Manual: rc_cube

66 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/reset_

→˓defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

67 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest

detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/trigger_

→˓dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_load_carrier (deprecated)

Persistently stores a load carrier on the rc_cube.
API version 2

This service is not available in API version 2. Use set_load_carrier (Section 6.4.1.5) in
rc_load_carrier_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_load_carrier

The definitions of the request and response are the same as described inset_load_carrier (Section 6.4.1.5) in rc_load_carrier_db.

Roboception GmbH

Manual: rc_cube

68 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

get_load_carriers (deprecated)

Returns the configured load carriers with the requested load_carrier_ids.

API version 2

This service is not available in API version 2. Use get_load_carriers (Section 6.4.1.5) in
rc_load_carrier_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_load_carriers

The definitions of the request and response are the same as described inget_load_carriers (Section 6.4.1.5) in rc_load_carrier_db.
delete_load_carriers (deprecated)

Deletes the configured load carriers with the requested load_carrier_ids.

API version 2

This service is not available in API version 2. Use delete_load_carriers (Section 6.4.1.5) in
rc_load_carrier_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_load_carriers

The definitions of the request and response are the same as described indelete_load_carriers (Section 6.4.1.5) in rc_load_carrier_db.
set_region_of_interest (deprecated)

Persistently stores a 3D region of interest on the rc_cube.
API version 2

This service is not available in API version 2. Use set_region_of_interest (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest

The definitions of the request and response are the same as described inset_region_of_interest (Section 6.4.2.4) in rc_roi_db.
get_regions_of_interest (deprecated)

Returns the configured 3D regions of interest with the requested region_of_interest_ids.

API version 2

This service is not available in API version 2. Use get_regions_of_interest (Section 6.4.2.4) in
rc_roi_db instead.

Roboception GmbH

Manual: rc_cube

69 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_regions_of_interest

The definitions of the request and response are the same as described inget_regions_of_interest (Section 6.4.2.4) in rc_roi_db.
delete_regions_of_interest (deprecated)

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.

API version 2

This service is not available in API version 2. Use delete_regions_of_interest (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest

The definitions of the request and response are the same as described indelete_regions_of_interest (Section 6.4.2.4) in rc_roi_db.
set_region_of_interest_2d (deprecated)

Persistently stores a 2D region of interest on the rc_cube.
API version 2

This service is not available in API version 2. Use set_region_of_interest_2d (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest_2d

The definitions of the request and response are the same as described inset_region_of_interest_2d (Section 6.4.2.4) in rc_roi_db.
get_regions_of_interest_2d (deprecated)

Returns the configured 2D regions of interest with the requested

region_of_interest_2d_ids.

API version 2

This service is not available in API version 2. Use get_regions_of_interest_2d (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_region_of_interest_2d

The definitions of the request and response are the same as described inget_regions_of_interest_2d (Section 6.4.2.4) in rc_roi_db.

Roboception GmbH

Manual: rc_cube

70 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

delete_regions_of_interest_2d (deprecated)

Deletes the configured 2D regions of interest with the requested

region_of_interest_2d_ids.

API version 2

This service is not available in API version 2. Use delete_regions_of_interest_2d (Section 6.4.2.4)
in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest_2d

The definitions of the request and response are the same as described indelete_regions_of_interest_2d (Section 6.4.2.4) in rc_roi_db.
6.2.1.8 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Table 6.13: Return codes of the LoadCarrier module’s services

Code Description

0 Success

-1 An invalid argument was provided

-4 Data acquisition took longer than allowed

-10 New element could not be added as the maximum storage capacity of load carriers has

been exceeded

-11 Sensor not connected, not supported or not ready

-302 More than one load carrier provided to the detect_load_carriers or
detect_filling_level services, but only one is supported

3 The detection timeout during load carrier detection has been reached. Consider reducing

the model tolerance.

10 The maximum storage capacity of load carriers has been reached

11 An existent persistent model was overwritten by the call to set_load_carrier

100 The requested load carriers were not detected in the scene

102 The detected load carrier has no points inside

300 A valid robot_pose was provided as argument but it is not required

6.2.2 TagDetect

6.2.2.1 Introduction

The TagDetect modules are optional on-board modules of the rc_cube and require separate licenses
(Section 9.5) to be purchased. The licenses are included in every rc_cube purchased after 01.07.2020.
The TagDetect modules run on board the rc_cube and allow the detection of 2D matrix codes and tags.
Currently, there are TagDetect modules for QR codes and AprilTags. The modules, furthermore, com-
pute the position and orientation of each tag in the 3D camera coordinate system, making it simple to

manipulate a tag with a robot or to localize the camera with respect to a tag.

Roboception GmbH

Manual: rc_cube

71 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Note: These modules are not available in blaze camera pipelines.

Note: These modules are pipeline specific. Changes to their settings or parameters only affect the

respective camera pipeline and have no influence on other pipelines running on the rc_cube.
Tag detection is made up of three steps:

1. Tag reading on the 2D image pair (see Tag reading, Section 6.2.2.2).
2. Estimation of the pose of each tag (see Pose estimation, Section 6.2.2.3).
3. Re-identification of previously seen tags (see Tag re-identification, Section 6.2.2.4).

In the following, the two supported tag types are described, followed by a comparison.

QR code

Fig. 6.7: Sample QR code

QR codes are two-dimensional matrix codes that contain arbitrary user-defined data. There is wide

support for decoding of QR codes on commodity hardware such as smartphones. Also, many online

and offline tools are available for the generation of such codes.

The “pixels” of a QR code are called modules. Appearance and resolution of QR codes change with the
amount of data they contain. While the special patterns in the three corners are always 7 modules

wide, the number of modules between them increases the more data is stored. The lowest-resolution

QR code is of size 21x21 modules and can contain up to 152 bits.

Even though many QR code generation tools support generation of specially designed QR codes (e.g.,

containing a logo, having round corners, or having dots as modules), a reliable detection of these tags

by the rc_cube’s TagDetect module is not guaranteed. The same holds for QR codes which contain
characters that are not part of regular ASCII.

Roboception GmbH

Manual: rc_cube

72 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

AprilTag

Fig. 6.8: A 16h5 tag (left), a 36h11 tag (center) and a 41h12 tag (right). AprilTags consist of a mandatory

white (a) and black (b) border and a variable amount of data bits (c).

AprilTags are similar to QR codes. However, they are specifically designed for robust identification at

large distances. As for QR codes, we will call the tag pixels modules. Fig. 6.8 shows how AprilTags are
structured. They have a mandatory white and black border, each one module wide. The tag families

16h5, 25h9, 36h10 and 36h11 are surrounded by this border and carry a variable amount of data mod-

ules in the center. For tag family 41h12, the black and white border is shifted towards the inside and the

data modules are in the center and also at the border of the tags. Other than QR codes, AprilTags do

not contain any user-defined information but are identified by a predefined family and ID. The tags in
Fig. 6.8 for example are of family 16h5, 36h11 and 41h12 have id 0, 11 and 0, respectively. All supported

families are shown in Table 6.14.

Table 6.14: AprilTag families

Family Number of tag IDs Recommended

16h5 30 -

25h9 35 o

36h10 2320 o

36h11 587 +

41h12 2115 +

For each family, the number before the “h” states the number of data modules contained in the tag:

While a 16h5 tag contains 16 (4x4) data modules ((c) in Fig. 6.8), a 36h11 tag contains 36 (6x6) modules

and a 41h12 tag contains 41 (3x3 inner + 4x8 outer) modules. The number behind the “h” refers to the

Hamming distance between two tags of the same family. The higher, the more robust is the detection,

but the fewer individual tag IDs are available for the same number of data modules (see Table 6.14).

The advantage of fewer modules (as for 16h5 compared to 36h11) is the lower resolution of the tag.

Hence, each tag module is larger and the tag therefore can be detected from a larger distance. This,

however, comes at a price: Firstly, fewer data modules lead to fewer individual tag IDs. Secondly, and

more importantly, detection robustness is significantly reduced due to a higher false positive rate; i.e,

tags are mixed up or nonexistent tags are detected in random image texture or noise. The 41h12 family

has its border shifted towards the inside, which gives it more data modules at a lower number of total

modules compared to the 36h11 family.

For these reasons we recommend using the 41h12 and 36h11 families and highly discourage the use of

the 16h5 family. The latter family should only be used if a large detection distance really is necessary for

an application. However, the maximum detection distance increases only by approximately 25% when

using a 16h5 tag instead of a 36h11 tag.

Pre-generated AprilTags can be downloaded at the AprilTag project website (https://april.eecs.umich.

Roboception GmbH

Manual: rc_cube

73 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://april.eecs.umich.edu/software/apriltag.html
https://april.eecs.umich.edu/software/apriltag.html

6.2. Detection modules

edu/software/apriltag.html). There, each family consists of multiple PNGs containing single tags. Each

pixel in the PNGs corresponds to one AprilTag module. When printing the tags of the families 36h11,

36h10, 25h9 and 16h5 special care must be taken to also include the white border around the tag that

is contained in the PNG (see (a) in Fig. 6.8). Moreover, all tags should be scaled to the desired printing

size without any interpolation, so that the sharp edges are preserved.

Comparison

Both QR codes and AprilTags have their up and down sides. While QR codes allow arbitrary user-defined

data to be stored, AprilTags have a pre-defined and limited set of tags. On the other hand, AprilTags

have a lower resolution and can therefore be detected at larger distances. Moreover, the continuous

white to black border in AprilTags allow for more precise pose estimation.

Note: If user-defined data is not required, AprilTags should be preferred over QR codes.

6.2.2.2 Tag reading

The first step in the tag detection pipeline is reading the tags on the 2D image pair. This step takes most

of the processing time and its precision is crucial for the precision of the resulting tag pose. To control

the speed of this step, the quality parameter can be set by the user. It results in a downscaling of the
image pair before reading the tags. High yields the largest maximum detection distance and highest
precision, but also the highest processing time. Low results in the smallest maximum detection distance
and lowest precision, but processing requires less than half of the time. Medium lies in between. Please
note that this quality parameter has no relation to the quality parameter of Stereo matching (Section
6.1.2).

Fig. 6.9: Visualization of module size 𝑠, size of a tag in modules 𝑟, and size of a tag in meters 𝑡 for
AprilTags (left and center) and QR codes (right)

Themaximumdetection distance 𝑧 at quality High can be approximated by using the following formulae,

𝑧 =
𝑓𝑠

𝑝
,

𝑠 =
𝑡

𝑟
,

where 𝑓 is the focal length (Section 6.1.1.1) in pixels and 𝑠 is the size of a module in meters. 𝑠 can easily
be calculated by the latter formula, where 𝑡 is the size of the tag in meters and 𝑟 is the width of the code
in modules (for AprilTags without the white border). Fig. 6.9 visualizes these variables. 𝑝 denotes the
number of image pixels per module required for detection. It is different for QR codes and AprilTags.

Roboception GmbH

Manual: rc_cube

74 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://april.eecs.umich.edu/software/apriltag.html
https://april.eecs.umich.edu/software/apriltag.html

6.2. Detection modules

Moreover, it varies with the tag’s angle to the camera and illumination. Approximate values for robust

detection are:

• AprilTag: 𝑝 = 5 pixels/module

• QR code: 𝑝 = 6 pixels/module

The following tables give sample maximum distances for different situations, assuming a focal length of

1075 pixels and the parameter quality to be set to High.

Table 6.15: Maximum detection distance examples for AprilTags

with a width of 𝑡 = 4 cm

AprilTag family Tag width Maximum distance

36h11 (recommended) 8 modules 1.1 m

16h5 6 modules 1.4 m

41h12 (recommended) 5 modules 1.7 m

Table 6.16: Maximum detection distance examples for QR codes

with a width of 𝑡 = 8 cm

Tag width Maximum distance

29 modules 0.49 m

21 modules 0.70 m

6.2.2.3 Pose estimation

For each detected tag, the pose of this tag in the camera coordinate frame is estimated. A requirement

for pose estimation is that a tag is fully visible in the left and right camera image. The coordinate frame

of the tag is aligned as shown below.

Fig. 6.10: Coordinate frames of AprilTags (left and center) and QR codes (right)

The z-axis is pointing “into” the tag. Please note that for AprilTags, although having the white border

included in their definition, the coordinate system’s origin is placed exactly at the transition from the

white to the black border. Since AprilTags do not have an obvious orientation, the origin is defined as

the upper left corner in the orientation they are pre-generated in.

During pose estimation, the tag’s size is also estimated, while assuming the tag to be square. For QR

codes, the size covers the full tag. For AprilTags, the size covers only the part inside the border defined by

the transition from the black to the white border modules, hence ignoring the outermost white border

for the tag families 16h5, 25h9, 36h10 and 36h11.

The user can also specify the approximate size (±10%) of tags with a specific ID. All tags not matching
this size constraint are automatically filtered out. This information is further used to resolve ambiguities

Roboception GmbH

Manual: rc_cube

75 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

in pose estimation that may arise if multiple tags with the same ID are visible in the left and right image

and these tags are aligned in parallel to the image rows.

Note: For best pose estimation results one shouldmake sure to accurately print the tag and to attach

it to a rigid and as planar as possible surface. Any distortion of the tag or bump in the surface will

degrade the estimated pose.

Note: It is highly recommended to set the approximate size of a tag. Otherwise, if multiple tags with

the same ID are visible in the left or right image, pose estimation may compute a wrong pose if these

tags have the same orientation and are approximately aligned in parallel to the image rows. However,

even if the approximate size is not given, the TagDetect modules try to detect such situations and

filter out affected tags.

Below tables give approximate precisions of the estimated poses of AprilTags. We distinguish between

lateral precision (i.e., in x and y direction) and precision in z direction. It is assumed that quality is set
to High, that the camera’s viewing direction is parallel to the tag’s normal and that the images are well
exposed and do not suffer from motion blur. The size of a tag does not have a significant effect on the

lateral or z precision; however, in general, larger tags improve precision. With respect to precision of

the orientation especially around the x and y axes, larger tags clearly outperform smaller ones.

Table 6.17: Approximate position precision for AprilTag detections

with High quality in an ideal scenario for different base lines

Distance rc_visard 65 - lateral rc_visard 65 - z rc_visard 160 - lateral rc_visard 160 - z
0.5 m 0.05 mm 0.5 mm 0.05 mm 0.3 mm

1.0 m 0.15 mm 1.8 mm 0.15 mm 1.4 mm

2.0 m 1.5 mm 14.5 mm 0.5 mm 3.7 mm

Table 6.18: Approximate orientation precision for AprilTag detec-

tions with High quality in an ideal scenario for different tag sizes

Distance 60 x 60 mm 120 x 120 mm

0.5 m 0.2° –

1.0 m 0.8° 0.3°

2.0 m 2.0° 0.8°

3.0 m – 1.8°

6.2.2.4 Tag re-identification

Each tag has an ID; for AprilTags it is the family plus tag ID, for QR codes it is the contained data. However,
these IDs are not unique, since the same tag may appear multiple times in a scene.

For distinction of these tags, the TagDetect modules also assign each detected tag a unique identifier.

To help the user identifying an identical tag over multiple detections, tag detection tries to re-identify

tags; if successful, a tag is assigned the same unique identifier again.

Tag re-identification compares the positions of the corners of the tags in the camera coordinate frame

to find identical tags. Tags are assumed identical if they did not or only slightly move in that frame.

By setting the max_corner_distance threshold, the user can specify how much a tag is allowed move in
the static coordinate frame between two detections to be considered identical. This parameter defines

the maximum distance between the corners of two tags, which is shown in Fig. 6.11. The Euclidean

distances of all four corresponding tag corners are computed in 3D. If none of these distances exceeds

the threshold, the tags are considered identical.

Roboception GmbH

Manual: rc_cube

76 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Fig. 6.11: Simplified visualization of tag re-identification. Euclidean distances between associated tag

corners in 3D are compared (red arrows).

After a number of tag detection runs, previously detected tag instances will be discarded if they are not

detected in the meantime. This can be configured by the parameter forget_after_n_detections.

6.2.2.5 Hand-eye calibration

In case the camera has been calibrated to a robot, the TagDetect module can automatically provide

poses in the robot coordinate frame. For the TagDetect node’s Services (Section 6.2.2.8), the frame of
the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the module are in the camera frame.

2. External frame (external). All poses provided by the module are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-

board Hand-eye calibration module (Section 6.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the sensor mounting is static, no further informa-

tion is needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to
and from the external frame.

All pose_frame values that are not camera or external are rejected.

6.2.2.6 Parameters

There are two separate modules available for tag detection, one for detecting AprilTags and one for

QR codes, named rc_april_tag_detect and rc_qr_code_detect, respectively. Apart from the module
names they share the same interface definition.

In addition to the REST-API interface (Section 7.3), the TagDetect modules provide pages on the Web GUI
in the desired pipeline under Modules → AprilTag and Modules → QR Code, on which they can be tried
out and configured manually.

In the following, the parameters are listed based on the example of rc_qr_code_detect. They are the
same for rc_april_tag_detect.

This module offers the following run-time parameters:

Roboception GmbH

Manual: rc_cube

77 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Table 6.19: The rc_qr_code_detect module’s run-time parame-
ters

Name Type Min Max Default Description

detect_inverted_tags bool false true false Detect tags with black

and white exchanged

forget_after_n_detections int32 1 1000 30 Number of detection

runs after which to

forget about a previous

tag during tag

re-identification

max_corner_distance float64 0.001 0.01 0.005 Maximum distance of

corresponding tag

corners in meters during

tag re-identification

quality string - - High Quality of tag detection:

[Low, Medium, High]

use_cached_images bool false true false Use most recently

received image pair

instead of waiting for a

new pair

Via the REST-API, these parameters can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/parameters?<parameter-name>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/parameters?
→˓<parameter-name>=<value>

6.2.2.7 Status values

The TagDetect modules reports the following status values:

Table 6.20: The rc_qr_code_detect and rc_april_tag_detect
module’s status values

Name Description

data_acquisition_time Time in seconds required to acquire image pair

last_timestamp_processed The timestamp of the last processed image pair

processing_time Processing time of the last detection in seconds

state The current state of the node

The reported state can take one of the following values.

Table 6.21: Possible states of the TagDetect modules

State name Description

IDLE The module is idle.

RUNNING The module is running and ready for tag detection.

FATAL A fatal error has occurred.

Roboception GmbH

Manual: rc_cube

78 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

6.2.2.8 Services

The TagDetect modules implement a state machine for starting and stopping. The actual tag detection

can be triggered via detect.

The user can explore and call the rc_qr_code_detect and rc_april_tag_detectmodules’ services, e.g.
for development and testing, using the REST-API interface (Section 7.3) or the rc_cube Web GUI (Section
7.1).

detect

Triggers a tag detection.

Details

Depending on the use_cached_images parameter, the module will use the latest
received image pair (if set to true) or wait for a new pair that is captured after the

service call was triggered (if set to false, this is the default). Even if set to true, tag

detection will never use one image pair twice.

It is recommended to call detect in state RUNNING only. It is also possible to be
called in state IDLE, resulting in an auto-start and stop of the module. This, how-
ever, has some drawbacks: First, the call will take considerably longer; second,

tag re-identification will not work. It is therefore highly recommended to manually

start the module before calling detect.

Tags might be omitted from the detect response due to several reasons, e.g., if
a tag is visible in only one of the cameras or if pose estimation did not succeed.

These filtered-out tags are noted in the log, which can be accessed as described inDownloading log files (Section 9.6).
A visualization of the latest detection is shown on the Web GUI tabs of the TagDe-

tect modules. Please note that this visualization will only be shown after calling

the detection service at least once. On the Web GUI, one can also manually try the

detection by clicking the Detect button.
Due to changes in system time on the rc_cube there might occur jumps of times-
tamps, forward as well as backward (see Time synchronization, Section 7.7). For-
ward jumps do not have an effect on the TagDetect module. Backward jumps,

however, invalidate already received images. Therefore, in case a backwards time

jump is detected, an error of value -102 will be issued on the next detect call, also
to inform the user that the timestamps included in the response will jump back.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_

→˓april_tag_detect>/services/detect

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/detect

Request

Optional arguments:

tags is the list of tag IDs that the TagDetect module should detect. For QR
codes, the ID is the contained data. For AprilTags, it is “<family>_<id>”, so,
e.g., for a tag of family 36h11 and ID 5, it is “36h11_5”. Naturally, the April-
Tag module can only be triggered for AprilTags, and the QR code module

only for QR codes.

Roboception GmbH

Manual: rc_cube

79 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

The tags list can also be left empty. In that case, all detected tags will
be returned. This feature should be used only during development and

debugging of an application. Whenever possible, the concrete tag IDs

should be listed, on the one hand avoiding some false positives, on the

other hand speeding up tag detection by filtering tags not of interest.

For AprilTags, the user can not only specify concrete tags but also a com-

plete family by setting the ID to “<family>”, so, e.g., “36h11”. All tags of

this family will then be detected. It is further possible to specify multiple

complete tag families or a combination of concrete tags and complete tag

families; for instance, triggering for “36h11”, “25h9_3”, and “36h10” at the

same time.

In addition to the ID, the approximate size (±10%) of a tag can be set
with the size parameter. As described in Pose estimation (Section 6.2.2.3),
this information helps to resolve ambiguities in pose estimation that may

arise in certain situations.

pose_frame controls whether the poses of the detected tags are re-
turned in the camera or external frame, as detailed in Hand-eye calibra-tion (Section 6.2.2.5). The default is camera.
The definition for the request arguments with corresponding datatypes

is:

{
"args": {

"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tags": [

{
"id": "string",
"size": "float64"

}
]

}
}

Response

timestamp is set to the timestamp of the image pair the tag detection ran on.

tags contains all detected tags.

id is the ID of the tag, similar to id in the request.

instance_id is the random unique identifier of the tag assigned by tag re-

identification.

pose contains position and orientation. The orientation is in quaternion format.

pose_frame is set to the coordinate frame above pose refers to. It will either be
“camera” or “external”.

Roboception GmbH

Manual: rc_cube

80 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

size will be set to the estimated tag size in meters; for AprilTags, the white border
is not included.

return_code holds possible warnings or error codes.

The definition for the response with corresponding datatypes is:

{
"name": "detect",
"response": {
"return_code": {
"message": "string",
"value": "int16"

},
"tags": [

{
"id": "string",
"instance_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"size": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

],
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

start

Starts the module by transitioning from IDLE to RUNNING.

Details

When running, the module receives images from the stereo camera and is ready to perform

tag detections. To save computing resources, the module should only be running when

necessary.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/start

Roboception GmbH

Manual: rc_cube

81 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/start

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module by transitioning to IDLE.

Details

This transition can be performed from state RUNNING and FATAL. All tag re-
identification information is cleared during stopping.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_

→˓april_tag_detect>/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/stop

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

restart

Restarts the module.

Roboception GmbH

Manual: rc_cube

82 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Details

If in RUNNING or FATAL, the module will be stopped and then started. If in IDLE, the
module will be started.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_

→˓april_tag_detect>/services/restart

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/restart

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "restart",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest

detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/trigger_dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/
→˓trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Roboception GmbH

Manual: rc_cube

83 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Response

The definition for the response with corresponding datatypes is:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/reset_

→˓defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.2.9 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common return codes:

Roboception GmbH

Manual: rc_cube

84 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Code Description

0 Success

-1 An invalid argument was provided

-4 A timeout occurred while waiting for the image pair

-9 The license is not valid

-11 Sensor not connected, not supported or not ready

-101 Internal error during tag detection

-102 There was a backwards jump of system time

-103 Internal error during tag pose estimation

-200 A fatal internal error occurred

200 Multiple warnings occurred; see list in message

201 The module was not in state RUNNING

6.2.3 ItemPick and BoxPick

6.2.3.1 Introduction

The ItemPick and BoxPick modules provide out-of-the-box perception solutions for robotic pick-and-

place applications. ItemPick targets the detection of flat surfaces of unknown objects for picking with

a suction gripper. BoxPick detects rectangular surfaces and determines their position, orientation and

size for grasping. With the +Match extension, BoxPick can be used to detect textured rectangles with

consistent orientations. The interface of both modules is very similar. Therefore both modules are

described together in this chapter.

In addition, both modules offer:

• A dedicated page on the rc_cube Web GUI (Section 7.1) for easy setup, configuration, testing, and
application tuning.

• The definition of regions of interest to select relevant volumes in the scene (see RoiDB, Section
6.4.2).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier, Section 6.2.1),
to provide grasps for items inside a bin only.

• The definition of compartments inside a load carrier to provide grasps for specific volumes of the

bin only.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-tion (Section 6.3.1) module, to provide grasps in the user-configured external reference frame.
• A quality value associated to each suggested grasp and related to the flatness of the grasping

surface.

• Selection of a sorting strategy to sort the returned grasps.

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Note: These modules are pipeline specific. Changes to their settings or parameters only affect the

respective camera pipeline and have no influence on other pipelines running on the rc_cube.
Note: In this chapter, cluster and surface are used as synonyms and identify a set of points (or pixels)

with defined geometrical properties.

The modules are optional on-board modules of the rc_cube and require separate ItemPick or BoxPicklicenses (Section 9.5) to be purchased. The +Match extension of BoxPick requires an extra license.

Roboception GmbH

Manual: rc_cube

85 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

6.2.3.2 Detection of items (BoxPick)

There are two different types of models for the rectangles to be detected by the BoxPick module.

Per default, BoxPick only supports item_models of type RECTANGLE. With the +Match extension, also
item models of type TEXTURED_BOX can be detected. The detection of the different item model types is
described below.

Optionally, further information can be given to the BoxPick module:

• The ID of the load carrier which contains the items to be detected.

• A compartment inside the load carrier where to detect items.

• The ID of the region of interest where to search for the load carriers if a load carrier is set. Other-

wise, the ID of the region of interest where to search for the items.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate

frame for the poses is external or the chosen region of interest is defined in the external frame.

The returned pose of a detected item is the pose of the center of the detected rectangle in the desired
reference frame (pose_frame), with its z axis pointing towards the camera and the x axis aligned with the
long side of the item. This pose has a 180° rotation ambiguity around the z axis, which can be resolved

by using the +Match extension with a TEXTURED_BOX item model. Each detected item includes a uuid
(Universally Unique Identifier) and the timestamp of the oldest image that was used to detect it.

Detection of items of type RECTANGLE (BoxPick)

BoxPick supports multiple item_models of type RECTANGLE. Each item model is defined by its minimum
and maximum size, with the minimum dimensions strictly smaller than the maximum dimensions. The

dimensions should be given fairly accurately to avoid misdetections, while still considering a certain

tolerance to account for possible production variations and measurement inaccuracies.

The detection of the rectangles runs in several steps. First, the point cloud is segmented into preferably

plane clusters. Then, straight line segments are detected in the 2D images and projected onto the

corresponding clusters. The clusters and the detected lines are visualized in the “Intermediate Result”

visualization on the Web GUI’s BoxPick page. Finally, for each cluster, the set of rectangles best fitting to
the detected line segments is extracted.

Detection of items of type TEXTURED_BOX (BoxPick+Match)

With the +Match extension, BoxPick additionally supports item_models of type TEXTURED_BOX. When
this item model type is used, only one item model can be given for each request.

The TEXTURED_BOX item model type should be used to detect multiple rectangles that have the same
texture, i.e. the same look or print, such as printed product packaging, labels, brochures or books. It

is required that for all objects the texture is at the same position with respect to the object geometry.

Furthermore, the texture should not be repetitive.

A TEXTURED_BOX item is defined by the item’s exact dimensions x, y and z (currently z must always be
0) with a tolerance dimensions_tolerance_m that indicates, how much the detected dimensions are
allowed to deviate from the given dimensions. By default, a tolerance of 0.01 m is assumed. Fur-

thermore, a template_id must be given, which will be used to refer to the specified dimensions and
the textures of the detected rectangles. Additionally, the maximum possible deformation of the items

max_deformation_m can be given in meters (default 0.004 m), to account for rigid or more flexible ob-
jects.

If a template_id is used for the first time, BoxPick will run the detection of rectangles as for the item
model type RECTANGLE, and use the given dimensions tolerance to specify the dimensions range. From
the detected rectangles, so-called views are created, which contain the shape and the image intensity
values of the rectangles, and are stored in a newly created template with the given template_id. The
views are created iteratively: Starting from the detected rectangle with the highest score, a view is

Roboception GmbH

Manual: rc_cube

86 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

created and then used to detect more rectangles with the same texture. Then, all remaining clusters

are used to detect further rectangles by the given dimensions range and again a view is created from

the best rectangle and used for further detections. Each template can store up to 10 different views, for

example corresponding to different types of the same product packaging. Each view will be assigned

a unique ID (view_uuid) and all rectangle items with a matching texture will be assigned the same
view_uuid. That also means that all items with the same view_uuid will have consistent orientations,
because the orientation of each item is aligned with its texture. The views can be displayed, deleted and

the orientation of each view can be set via the Web GUI (Section 7.1) by clicking on the template or its
edit symbol in the template list. Each detected item contains a field view_pose_set indicating whether
the orientation of the item’s view was explicitly set or is still unset at its original random state, which has

a 180° ambiguity. The type of a returned item with a view_uuid will be TEXTURED_RECTANGLE.

If the template with the given template_id already exists, the existing views will be used to detect
rectangles based on their texture. If additional rectangles are found with matching dimensions, but

different texture, new views will be generated and added to the template. When the maximum number

of views is reached, views that are matched only rarely will be deleted so that newly generated views

can be added to the template and the template is kept up-to-date. To prevent a template from being

updated, automatic updating can be disabled and enabled for each template in the Web GUI by clicking

on the template or the edit symbol in the template list. The dimension tolerance and the maximum

deformation can also be changed there for each template. The maximum deformation determines

the tolerance for the texture matching, representing possible shifts within the texture, e.g. caused by

deformations of the object surface. For rigid objects the max_deformation_m should be set to a low
value in meters to ensure accurate matching.

The template’s dimensions can only be specified when creating a new template. Once the template is
generated, the dimensions cannot be changed and do not need to be given in the detect request. If

the dimensions are still given in the request, they must match the existing dimensions in the template.

However, the dimensions_tolerance_m and max_deformation_m can be set differently in every detect
request and their values will also be updated in the stored template.

6.2.3.3 Computation of grasps

The ItemPick and BoxPickmodules offer a service for computing grasps for suction grippers. The gripper

is defined by its suction surface length and width.

The ItemPickmodule identifies flat surfaces in the scene and supports flexible and/or deformable items.

The type of these item_models is called UNKNOWN since they don’t need to have a standard geometrical
shape. Optionally, the user can also specify the minimum and maximum size of the item.

For BoxPick, the grasps are computed on the detected rectangular items (see Detection of items (BoxPick),
Section 6.2.3.2).

Optionally, further information can be given to the modules in a grasp computation request:

• The ID of the load carrier which contains the items to be grasped.

• A compartment inside the load carrier where to compute grasps (see Load carrier compartments,
Section 6.4.1.3).

• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.

Otherwise, the ID of the 3D region of interest where to compute grasps.

• Collision detection information: The ID of the gripper to enable collision checking and optionally

a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below inCollisionCheck (Section 6.2.3.4).
A grasp provided by the ItemPick and BoxPick modules represents the recommended pose of the TCP

(Tool Center Point) of the suction gripper. The grasp type is always set to SUCTION. The computed grasp
pose is the center of the biggest ellipse that can be inscribed in each surface. The grasp orientation is

a right-handed coordinate system and is defined such that its z axis is normal to the surface pointing

inside the object at the grasp position and its x axis is directed along the maximum elongation of the

ellipse.

Roboception GmbH

Manual: rc_cube

87 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Fig. 6.12: Illustration of suction grasp with coordinate system and ellipse representing the maximum

suction surface.

Each grasp includes the dimensions of the maximum suction surface available, modelled as an ellipse

of axes max_suction_surface_length and max_suction_surface_width. The user is enabled to filter
grasps by specifying the minimum suction surface required by the suction device in use.

In the BoxPick module, the grasp position corresponds to the center of the detected rectangle and the

dimensions of the maximum suction surface available matches the estimated rectangle dimensions.

Detected rectangles with missing data or occlusions by other objects for more than 15% of their surface

do not get an associated grasp.

Each grasp also includes a quality value, which gives an indication of the flatness of the grasping sur-
face. The quality value varies between 0 and 1, where higher numbers correspond to a flatter recon-
structed surface.

The grasp definition is complemented by a uuid (Universally Unique Identifier) and the timestamp of the
oldest image that was used to compute the grasp.

Grasp sorting is performed based on the selected sorting strategy. The following sorting strategies are

available and can be set in the Web GUI (Section 7.1) or using the set_sorting_strategies service call:
• gravity: highest grasp points along the gravity direction are returned first,

• surface_area: grasp points with the largest surface area are returned first,

• direction: grasp points with the shortest distance along a defined direction vector in a given
pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a

combination of gravity and surface_area.

6.2.3.4 Interaction with other modules

Internally, the ItemPick and BoxPick modules depend on, and interact with other on-board modules as

listed below.

Note: All changes and configuration updates to these modules will affect the performance of the

ItemPick and BoxPick modules.

Stereo camera and Stereo matching

The ItemPick and BoxPick modules make internally use of the following data:

• Rectified images from the Cameramodule (rc_camera, Section 6.1.1);
• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,
Section 6.1.2).

All processed images are guaranteed to be captured after the module trigger time.

Roboception GmbH

Manual: rc_cube

88 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

IO and Projector Control

In case the rc_cube is used in conjunction with an external random dot projector and the IO and ProjectorControl module (rc_iocontrol, Section 6.3.4), it is recommended to connect the projector to GPIO Out
1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matching pa-rameters, Section 6.1.2.5), so that on each image acquisition trigger an image with and without projector
pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.3.4.1).
In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images (see Stereo camera parameters, Section 6.1.1.3).
Hand-eye calibration

In case the camera has been calibrated to a robot, the ItemPick and BoxPick modules can automatically

provide poses in the robot coordinate frame. For the ItemPick and BoxPick nodes’ Services (Section
6.2.3.7), the frame of the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no prior
knowledge about the pose of the camera in the environment is required. This means that the

configured regions of interest and load carriersmovewith the camera. It is the user’s responsibility

to update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-

board Hand-eye calibration module (Section 6.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is

needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame and the definition of the sorting direction:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• In all other cases, providing the robot pose is optional.

LoadCarrier

The ItemPick and BoxPick modules use the load carrier detection functionality provided by the LoadCar-rier module (rc_load_carrier, Section 6.2.1), with the run-time parameters specified for this module.
However, only one load carrier will be returned and used in case multiple matching load carriers could

be found in the scene. In case multiple load carriers of the same type are visible, a 3D region of interest

should be set to ensure that always the same load carrier is used for the ItemPick and BoxPick modules.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the ItemPick and BoxPick modules

by passing the ID of the used gripper and optionally a pre-grasp offset to the compute_grasps service

Roboception GmbH

Manual: rc_cube

89 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

call. The gripper has to be defined in the GripperDB module (see Setting a gripper, Section 6.4.3.2) and
details about collision checking are given in Collision checking within other modules (Section 6.3.2.2).
If collision checking is enabled, only grasps which are collision free will be returned. However, the

visualization images on the ItemPick or BoxPick page of the Web GUI also show colliding grasp points as
black ellipses.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-sionCheck Parameters (Section 6.3.2.3).
6.2.3.5 Parameters

The ItemPick and BoxPick modules are called rc_itempick and rc_boxpick in the REST-API and are
represented in the Web GUI (Section 7.1) in the desired pipeline under Modules→ ItemPick and Modules
→ BoxPick. The user can explore and configure the rc_itempick and rc_boxpick module’s run-time
parameters, e.g. for development and testing, using the Web GUI or the REST-API interface (Section 7.3).
Parameter overview

Note: The default values in the parameter table below show the values of the rc_visard. The values
can be different for other sensors.

These modules offer the following run-time parameters:

Table 6.22: The rc_itempick and rc_boxpickmodules’ application
parameters

Name Type Min Max Default Description

max_grasps int32 1 20 5 Maximum number of provided grasps

Roboception GmbH

Manual: rc_cube

90 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Table 6.23: The rc_itempick and rc_boxpick modules’ surface
clustering parameters

Name Type Min Max Default Description

cluster_max_dimension float64 0.05 0.8 0.3 Only for rc_itempick.

Maximum allowed di-

ameter for a cluster in

meters. Clusters with

a diameter larger than

this value are not used

for grasp computation.

cluster_max_curvature float64 0.005 0.5 0.11 Maximum curvature

allowed within one

cluster. The smaller

this value, the more

clusters will be split

apart.

clustering_patch_size int32 3 10 4 Only for rc_itempick.

Size in pixels of the

square patches the

depth map is subdi-

vided into during the

first clustering step

clustering_max_surface_rmse float64 0.0005 0.01 0.004 Maximum root-mean-

square error (RMSE) in

meters of points be-

longing to a surface

clustering_discontinuity_factor float64 0.1 5.0 1.0 Factor used to discrim-

inate depth disconti-

nuities within a patch.

The smaller this value,

the more clusters will

be split apart.

Table 6.24: The rc_boxpickmodule’s rectangle detection parame-
ters

Name Type Min Max Default Description

mode string - - Unconstrained Mode of the rectan-

gle detection: [Uncon-

strained, PackedGrid-

Layout, PackedLayers]

manual_line_sensitivity bool false true false Indicates whether the

user-defined line sen-

sitivity should be used

or the automatic one

line_sensitivity float64 0.1 1.0 0.1 Sensitivity of the line

detector

prefer_splits bool false true false Indicates whether rect-

angles are split into

smaller ones when

possible

min_cluster_coverage float64 0.0 0.99 0.0 Gives the minimal ra-

tio of points per cluster

that must be covered

with detected items.

Roboception GmbH

Manual: rc_cube

91 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s ItemPick or BoxPick page. The name
in the Web GUI is given in brackets behind the parameter name and the parameters are listed in the

order they appear in the Web GUI:

max_grasps (Maximum Grasps)

sets the maximum number of provided grasps.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_itempick|rc_boxpick>/parameters?
→˓max_grasps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?max_grasps=<value>

cluster_max_dimension (Only for ItemPick, Cluster Maximum Dimension)

is the maximum allowed diameter for a cluster in meters. Clusters with a diameter

larger than this value are not used for grasp computation.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?cluster_max_

→˓dimension=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?cluster_max_dimension=<value>

cluster_max_curvature (Cluster Maximum Curvature)

is the maximum curvature allowed within one cluster. The smaller this value, the

more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_itempick|rc_boxpick>/parameters?
→˓cluster_max_curvature=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?cluster_max_

→˓curvature=<value>

Roboception GmbH

Manual: rc_cube

92 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

clustering_patch_size (Only for ItemPick, Patch Size)

is the size of the square patches the depth map is subdivided into during the first

clustering step in pixels.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?clustering_

→˓patch_size=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_patch_size=<value>

clustering_discontinuity_factor (Discontinuity Factor)

is the factor used to discriminate depth discontinuities within a patch. The smaller

this value, the more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_itempick|rc_boxpick>/parameters?
→˓clustering_discontinuity_factor=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?clustering_

→˓discontinuity_factor=<value>

clustering_max_surface_rmse (Maximum Surface RMSE)

is the maximum root-mean-square error (RMSE) in meters of points belonging to

a surface.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_itempick|rc_boxpick>/parameters?
→˓clustering_max_surface_rmse=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?clustering_max_

→˓surface_rmse=<value>

mode (Only for BoxPick,Mode)

determines the mode of the rectangle detection. Possible values are

Unconstrained, PackedGridLayout and PackedLayers. In PackedGridLayout
mode, rectangles of a cluster are detected in a dense grid pattern. In PackedLayers
mode, boxes are assumed to form layers and box detection will start searching

for items at the cluster corners. Use this mode in de-palletizing applications. In

Roboception GmbH

Manual: rc_cube

93 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Unconstrained mode (default), rectangles are detected without posing any con-
straints on their relative locations or their positions in the segmented cluster. Fig.

6.13 illustrates the modes for different scenarios.

Fig. 6.13: Illustration of appropriate BoxPick modes for different scenes. Modes marked with yellow are

applicable but not recommended for the corresponding scene. The gray areas indicate the rectangles

to be detected.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?mode=<value>

manual_line_sensitivity (Only for BoxPick,Manual Line Sensitivity)

determines whether the user-defined line sensitivity should be used to extract

the lines for rectangle detection. If this parameter is set to true, the user-defined

line_sensitivity value will be used. If this parameter is set to false, automatic
line sensitivity will be used. This parameter should be set to true when automatic

line sensitivity does not give enough lines at the box boundaries so that boxes can-

not be detected. The detected line segments are visualized in the “Intermediate

Result” visualization on the Web GUI’s BoxPick page.
Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH

Manual: rc_cube

94 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?manual_line_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?manual_line_sensitivity=<value>

line_sensitivity (Only for BoxPick, Line Sensitivity)

determines the line sensitivity for extracting the lines for rectangle detection, if

the parameter manual_line_sensitivity is set to true. Otherwise, the value of
this parameter has no effect on the rectangle detection. Higher values give more

line segments, but also increase the runtime of the box detection. This parame-

ter should be increased when boxes cannot be detected because their boundary

edges are not detected. The detected line segments are visualized in the “Inter-

mediate Result” visualization on the Web GUI’s BoxPick page.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?line_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?line_sensitivity=<value>

prefer_splits (Only for BoxPick, Prefer Splits)

determines whether rectangles should be split into smaller ones if the smaller

ones also match the given item models. This parameter should be set to true for

packed box layouts in which the given item models would also match a rectangle

of the size of two adjoining boxes. If this parameter is set to false, the larger

rectangles will be preferred in these cases.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?prefer_splits=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?prefer_splits=<value>

min_cluster_coverage (Only for BoxPick,Minimum Cluster Coverage)

determines which ratio of each segmented cluster must be covered with rectangle

detections to consider the detections to be valid. If the minimum cluster coverage

is not reached for a cluster, no rectangle detections will be returned for this cluster

and a warning will be given. This parameter should be used to verify that all items

on a layer in a de-palletizing scenario are detected.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH

Manual: rc_cube

95 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?min_cluster_

→˓coverage=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?min_cluster_coverage=<value>

6.2.3.6 Status values

The rc_itempick and rc_boxpickmodules report the following status values:

Table 6.25: The rc_itempick and rc_boxpick modules status val-
ues

Name Description

data_acquisition_time Time in seconds required by the last active service to acquire

images

grasp_computation_time Processing time of the last grasp computation in seconds

last_timestamp_processed The timestamp of the last processed dataset

load_carrier_detection_time Processing time of the last load carrier detection in seconds

processing_time Processing time of the last detection (including load carrier

detection) in seconds

state The current state of the rc_itempick and rc_boxpick node

The reported state can take one of the following values.

Table 6.26: Possible states of the ItemPick and BoxPick modules

State name Description

IDLE The module is idle.

RUNNING The module is running and ready for load carrier detection and grasp computation.

FATAL A fatal error has occurred.

6.2.3.7 Services

The user can explore and call the rc_itempick and rc_boxpickmodule’s services, e.g. for development
and testing, using the REST-API interface (Section 7.3) or the rc_cube Web GUI (Section 7.1).
The ItemPick and BoxPick modules offer the following services.

detect_items (BoxPick only)

Triggers the detection of rectangles as described in Detection of items (BoxPick) (Section
6.2.3.2).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/detect_items

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/detect_items

Roboception GmbH

Manual: rc_cube

96 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.3.4).
item_models: list of item models to be detected. The type of the item model must
be RECTANGLE or TEXTURED_BOX. For type RECTANGLE, rectangle must be filled,
while for TEXTURED_BOX, textured_box must be filled. See Detection of items (Box-Pick) (Section 6.2.3.2) for a detailed description of the item model types.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.3.4).
Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be detected.

load_carrier_compartment: compartment inside the load carrier where to detect
items (see Load carrier compartments, Section 6.4.1.3).
region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest

where to search for the items.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

97 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"z": "float64"
},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers.

items: list of detected rectangles.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_items",
"response": {
"items": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {
"x": "float64",
"y": "float64"

},

(continues on next page)

Roboception GmbH

Manual: rc_cube

98 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string",
"view_pose_set": "bool",
"view_uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

(continues on next page)

Roboception GmbH

Manual: rc_cube

99 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

}

compute_grasps (for ItemPick)

Triggers the computation of grasping poses for a suction device as described in Computationof grasps (Section 6.2.3.3).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/compute_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/compute_grasps

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.3.4).
suction_surface_length: length of the suction device grasping surface.

suction_surface_width: width of the suction device grasping surface.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.3.4).
Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be grasped.

load_carrier_compartment: compartment inside the load carrier where to com-
pute grasps (see Load carrier compartments, Section 6.4.1.3).
region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest

where to compute grasps.

item_models: list of unknown items with minimum and maximum dimensions,
with the minimum dimensions strictly smaller than the maximum dimensions.

Only one item_model of type UNKNOWN is currently supported.

collision_detection: see Collision checking within other modules (Section 6.3.2.2).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

(continues on next page)

Roboception GmbH

Manual: rc_cube

100 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"type": "string",
"unknown": {
"max_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.

grasps: sorted list of suction grasps.

timestamp: timestamp of the image set the detection ran on.

Roboception GmbH

Manual: rc_cube

101 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},

(continues on next page)

Roboception GmbH

Manual: rc_cube

102 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

compute_grasps (for BoxPick)

Triggers the detection of rectangles and the computation of grasping poses for the detected

rectangles as described in Computation of grasps (Section 6.2.3.3).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/compute_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/compute_grasps

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.3.4).
item_models: list of item models to be detected. The type of the item model must
be RECTANGLE or TEXTURED_BOX. For type RECTANGLE, rectangle must be filled,
while for TEXTURED_BOX, textured_box must be filled. See Detection of items (Box-Pick) (Section 6.2.3.2) for a detailed description of the item model types.
suction_surface_length: length of the suction device grasping surface.

suction_surface_width: width of the suction device grasping surface.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.3.4).
Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be grasped.

Roboception GmbH

Manual: rc_cube

103 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

load_carrier_compartment: compartment inside the load carrier where to com-
pute grasps (see Load carrier compartments, Section 6.4.1.3).
region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest

where to compute grasps.

collision_detection: see Collision checking within other modules (Section 6.3.2.2).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH

Manual: rc_cube

104 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.

items: list of detected rectangles.

grasps: sorted list of suction grasps.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",

(continues on next page)

Roboception GmbH

Manual: rc_cube

105 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"sec": "int32"
},
"type": "string",
"uuid": "string"

}
],
"items": [
{

"grasp_uuids": [
"string"

],
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {

"x": "float64",
"y": "float64"

},
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string",
"view_pose_set": "bool",
"view_uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH

Manual: rc_cube

106 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps returned by the

compute_grasps service (see Computation of grasps, Section 6.2.3.3).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_itempick|rc_boxpick>/services/
→˓set_sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

If the weight for direction is set, the vector must contain the direction vector and
pose_framemust be either camera or external.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

107 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"surface_area": {
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps returned by the compute-grasps service
(see Computation of grasps, Section 6.2.3.3).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_itempick|rc_boxpick>/services/
→˓get_sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

108 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

},
"surface_area": {
"weight": "float64"

}
}

}

start

Starts the module. If the command is accepted, the module moves to state RUNNING.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_itempick|rc_boxpick>/services/
→˓start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/start

Request

This service has no arguments.

Response

The current_state value in the service response may differ from RUNNING if the state tran-
sition is still in process when the service returns.

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

Roboception GmbH

Manual: rc_cube

109 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

stop

Stops the module. If the command is accepted, the module moves to state IDLE.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_itempick|rc_boxpick>/services/
→˓stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/stop

Request

This service has no arguments.

Response

The current_state value in the service response may differ from IDLE if the state transition
is still in process when the service returns.

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest

detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_itempick|rc_boxpick>/services/
→˓trigger_dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/trigger_dump

Request

Response

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also resets

sorting strategies.

Roboception GmbH

Manual: rc_cube

110 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_itempick|rc_boxpick>/services/
→˓reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest (deprecated)

Persistently stores a 3D region of interest on the rc_cube.
Details

This service can be called as follows.

API version 2

This service is not available in API version 2. Use set_region_of_interest (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/set_region_of_interest

get_regions_of_interest (deprecated)

Returns the configured 3D regions of interest with the requested region_of_interest_ids.

Details

This service can be called as follows.

API version 2

This service is not available in API version 2. Use get_regions_of_interest (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/get_regions_of_

→˓interest

Roboception GmbH

Manual: rc_cube

111 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

delete_regions_of_interest (deprecated)

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.

Details

This service can be called as follows.

API version 2

This service is not available in API version 2. Use delete_regions_of_interest (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/delete_regions_of_

→˓interest

6.2.3.8 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Table 6.27: Return codes of the ItemPick and BoxPick services

Code Description

0 Success

-1 An invalid argument was provided

-3 An internal timeout occurred, e.g. during box detection if the given dimension range is too

large

-4 Data acquisition took longer than allowed

-8 The template has been deleted during detection.

-10 New element could not be added as the maximum storage capacity of load carriers, regions

of interest or template has been exceeded

-11 Sensor not connected, not supported or not ready

-200 Fatal internal error

-301 More than one item model of type UNKNOWN provided to the compute_grasps service

10 The maximum storage capacity of load carriers, regions of interest or templates has been

reached

11 An existent persistent model was overwritten by the call to set_load_carrier or
set_region_of_interest

100 The requested load carriers were not detected in the scene

101 No valid surfaces or grasps were found in the scene

102 The detected load carrier is empty

103 All computed grasps are in collision with the load carrier

112 Rejected detections of one or more clusters, because min_cluster_coverage was not

reached.

300 A valid robot_pose was provided as argument but it is not required

999 Additional hints for application development

6.2.3.9 BoxPick Template API

BoxPick templates are only available with the +Match extension of BoxPick. For template upload, down-

load, listing and removal, special REST-API endpoints are provided. Templates can also be uploaded,

Roboception GmbH

Manual: rc_cube

112 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

downloaded and removed via the Web GUI. The templates include the dimensions, the views and their

poses, if set. Up to 50 templates can be stored persistently on the rc_cube.
GET /templates/rc_boxpick

Get list of all rc_boxpick templates.

Template request

GET /api/v2/templates/rc_boxpick HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Template)
• 404 Not Found – node not found

Referenced Data Models

• Template (Section 7.3.4)
GET /templates/rc_boxpick/{id}

Get a rc_boxpick template. If the requested content-type is application/octet-stream, the template

is returned as file.

Template request

GET /api/v2/templates/rc_boxpick/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)
Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns Template)
• 404 Not Found – node or template not found

Referenced Data Models

Roboception GmbH

Manual: rc_cube

113 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. Detection modules

• Template (Section 7.3.4)
PUT /templates/rc_boxpick/{id}

Create or update a rc_boxpick template.

Template request

PUT /api/v2/templates/rc_boxpick/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)
Form Parameters

• file – template file (required)
Request Headers

• Accept –multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Template)
• 400 Bad Request – Template is not valid or max number of templates reached

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-

ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.3.4)
DELETE /templates/rc_boxpick/{id}

Remove a rc_boxpick template.

Template request

DELETE /api/v2/templates/rc_boxpick/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)
Request Headers

• Accept – application/json application/ubjson

Response Headers

Roboception GmbH

Manual: rc_cube

114 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2

6.2. Detection modules

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-

ule.

• 404 Not Found – node or template not found

6.2.4 SilhouetteMatch

6.2.4.1 Introduction

The SilhouetteMatch module is an optional on-board module of the rc_cube and requires a separate
SilhouetteMatch license (Section 9.5) to be purchased.
Note: This module is not available in camera pipelines of type blaze.

The module detects objects by matching a predefined silhouette (“template”) to edges in the image.

The SilhouetteMatch module can detect objects in two different scenarios:

With calibrated base plane: The objects are placed on a common base plane, which must

be calibrated before the detection, and the objects have significant edges on a common

plane that is parallel to the base plane.

With object plane detection: The objects can be placed at different, previously unknown

heights, if the objects have a planar surface and their outer contours are well visible in the

images (e.g. stacked flat objects).

Templates for object detection can be created by uploading a DXF file and specifying the object height.

The correct scale and unit of the contours are extracted from the DXF file. If no units are present in the

DXF file, the user has to specify which units should be used. When the outer contour of the object in the

DXF file is closed, a 3D collision model is created automatically by extruding the contour by the given

object height. This model will then be used for collision checking and in 3D visualizations. Uploading

a DXF file can be done in the Web GUI via the + Create a new Template button in the SilhouetteMatchTemplates and Grasps section on the Modules→ SilhouetteMatch or Database→ Templates pages.
Roboception also offers a template generation service on their website (https://roboception.com/en/

template-request/), where the user can upload CAD files or recorded data of the objects and request

object templates for the SilhouetteMatch module.

The object templates consist of significant edges of each object. These template edges are matched to

the edges detected in the left and right camera images, considering the actual size of the objects and

their distance from the camera. The poses of the detected objects are returned and can be used for

grasping, for example.

The SilhouetteMatch module offers:

• A dedicated page on the rc_cube Web GUI (Section 7.1) for easy setup, configuration, testing, and
application tuning.

• A REST-API interface (Section 7.3) and a KUKA Ethernet KRL Interface (Section 7.4).
• The definition of 2D regions of interest to select relevant parts of the camera image (see Setting aregion of interest, Section 6.2.4.3).
• A load carrier detection functionality for bin-picking applications (see LoadCarrier, Section 6.2.1),
to provide grasps for objects inside a bin only.

• Storing of up to 50 templates.

Roboception GmbH

Manual: rc_cube

115 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://roboception.com/en/template-request/
https://roboception.com/en/template-request/
https://roboception.com/en/template-request/

6.2. Detection modules

• The definition of up to 50 grasp points for each template via an interactive visualization in the Web

GUI.

• Collision checking between the gripper and the load carrier, the calibrated base plane, other de-

tected objects and/or the point cloud.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-tion (Section 6.3.1) module, to provide grasps in the user-configured external reference frame.
• Selection of a sorting strategy to sort the detected objects and returned grasps.

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-

tive camera pipeline and have no influence on other pipelines running on the rc_cube.
However, the object templates and grasp points are stored globally. Setting, changing or deleting an

object template or its grasps affects all camera pipelines.

Suitable objects

The SilhouetteMatch module is intended for objects which have significant edges on a common plane

that is parallel to the plane on which the objects are placed. This applies to flat, nontransparent objects,

such as routed, laser-cut or water-cut 2D parts and flat-machined parts. More complex parts can also

be detected if there are significant edges on a common plane, e.g. a special pattern printed on a flat

surface. The detection works best for objects on a texture-free plane. The color of the base plane should

be chosen such that a clear contrast between the objects and the base plane appears in the intensity

image.

In case the objects are not placed on a common base plane or the base plane cannot be calibrated

beforehand, the objects need to have a planar surface and their outer contour must be well visible

in the left and right images. Furthermore, the template for these objects must have a closed outer

contour.

Suitable scene

The scene must meet the following conditions to be suitable for the SilhouetteMatch module:

• The objects to be detected must be suitable for the SilhouetteMatch module as described above.

• Only objects belonging to one specific template are visible at a time (unmixed scenario). In case

other objects are visible as well, a proper region of interest (ROI) must be set.

• In case a calibrated base plane is used: The offset between the base plane normal and the cam-

era’s line of sight does not exceed 10 degrees.

• In case the object planes are detected automatically: The offset between the object’s planar sur-

face normal and the camera’s line of sight does not exceed 25 degrees.

• The objects are not partially or fully occluded.

• All visible objects are right side up (no flipped objects).

• The object edges to be matched are visible in both, left and right camera images.

6.2.4.2 Base-plane calibration

In case all objects are placed on a common plane that is known beforehand, a base-plane calibration

should be performed before triggering a detection. Thereby, the distance and angle of the plane on

which the objects are placed is measured and stored persistently on the rc_cube.

Roboception GmbH

Manual: rc_cube

116 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Separating the detection of the base plane from the actual object detection renders scenarios possible

in which the base plane is temporarily occluded. Moreover, it increases performance of the object

detection for scenarios where the base plane is fixed for a certain time; thus, it is not necessary to

continuously re-detect the base plane.

The base-plane calibration can be performed in three different ways, which will be explained in more

detail further down:

• AprilTag based

• Stereo based

• Manual

The base-plane calibration is successful if the normal vector of the estimated base plane is at most 10

degrees offset to the camera’s line of sight. If the base-plane calibration is successful, it will be stored

persistently on the rc_cube until it is removed or a new base-plane calibration is performed.
Note: To avoid privacy issues, the image of the persistently stored base-plane calibration will appear

blurred after rebooting the rc_cube.
In scenarios where the base plane is not accessible for calibration, a plane parallel to the base plane

can be calibrated. Then an offset parameter can be used to shift the estimated plane onto the actual
base plane where the objects are placed. The offset parameter gives the distance in meters by which
the estimated plane is shifted towards the camera.

In the REST-API, a plane is defined by a normal and a distance. normal is a normalized 3-vector, spec-
ifying the normal of the plane. The normal points away from the camera. distance represents the
distance of the plane from the camera along the normal. Normal and distance can also be interpreted

as 𝑎, 𝑏, 𝑐, and 𝑑 components of the plane equation, respectively:

𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

AprilTag based base-plane calibration

AprilTag detection (ref. TagDetect, Section 6.2.2) is used to find AprilTags in the scene and fit a plane
through them. At least three AprilTags must be placed on the base plane so that they are visible in the

left and right camera images. The tags should be placed such that they are spanning a triangle that

is as large as possible. The larger the triangle, the more accurate is the resulting base-plane estimate.

Use this method if the base plane is untextured and no external random dot projector is available. This

calibration mode is available via the REST-API interface (Section 7.3) and the rc_cubeWeb GUI.
Stereo based base-plane calibration

The 3D point cloud computed by the stereo matching module is used to fit a plane through its 3D

points. Therefore, the region of interest (ROI) for this method must be set such that only the relevant

base plane is included. The plane_preference parameter allows to select whether the plane closest to
or farthest from the camera should be used as base plane. Selecting the closest plane can be used in

scenarios where the base plane is completely occluded by objects or not accessible for calibration. Use

this method if the base plane is well textured or you can make use of a random dot projector to project

texture on the base plane. This calibration mode is available via the REST-API interface (Section 7.3) and
the rc_cubeWeb GUI.
Manual base-plane calibration

The base plane can be set manually if its parameters are known, e.g. from previous calibrations. This

calibration mode is only available via the REST-API interface (Section 7.3) and not the rc_cubeWeb GUI.

Roboception GmbH

Manual: rc_cube

117 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

6.2.4.3 Setting a region of interest

If objects are to be detected only in part of the camera’s field of view, a 2D region of interest (ROI) can

be set accordingly as described in Region of interest (Section 6.4.2.2).
6.2.4.4 Setting of grasp points

To use SilhouetteMatch directly in a robot application, up to 50 grasp points can be defined for each

template. A grasp point represents the desired position and orientation of the robot’s TCP (Tool Center

Point) to grasp an object as shown in Fig. 6.14.

y

z

x
PgraspTCP y

z

x

Fig. 6.14: Definition of grasp points with respect to the robot’s TCP

Each grasp consists of an id which must be unique within all grasps for an object template, the
template_id representing the template to which the grasp should be attached, and the pose in the
coordinate frame of the object template. Grasp points can be set via the REST-API interface (Section 7.3),
or by using the interactive visualization in the Web GUI. Furthermore, a priority (spanning -2 for very
low to 2 for very high) can be assigned to a grasp. Priorities can facilitate robot applications and shorten

response times when the run-time parameter only_highest_priority_grasps is set to true. In this case
collision checking concludes when grasps with the highest possible priority have been found. Finally,

different grasps can be associated with different grippers by specifying a gripper_id. These individual
grippers are then used for collision checking of the corresponding grasps instead of the gripper de-

fined in the detect_object request. If no gripper_id is given, the gripper defined in the detect_object
request will be used for collision checking.

When a grasp is defined on a symmetric object, all grasps symmetric to the defined one will automat-

ically be considered in the SilhouetteMatch module’s detect_object service call. Symmetric grasps for
a given grasp point can be retrieved using the get_symmetric_grasps service call and visualized in the
Web GUI.

Users can also define replications of grasps around a custom axis. These replications spawn multiple

grasps and free users from setting too many grasps manually. The replication origin is defined as a

coordinate frame in the object’s coordinate frame and the x axis of the replication origin frame corre-

sponds to the replication axis. The grasp is replicated by rotating it around this x axis starting from its

original pose. The replication is done in steps of size step_x_deg degrees. The range is defined by the
minimal and maximal boundaries min_x_deg and max_x_deg. The minimal (maximal) boundary must be
a non-positive (non-negative) number up to (minus) 180 degrees.

Setting grasp points in the Web GUI

The rc_cube Web GUI provides an intuitive and interactive way of defining grasp points for object tem-
plates. In a first step, the object template has to be uploaded to the rc_cube. This can be done in the
Web GUI in any pipeline under Modules → SilhouetteMatch by clicking on + Add a new Template in theTemplates and Grasps section, or in Database → Templates in the SilhouetteMatch Templates and Grasps
section. Once the template upload is complete, a dialog with a 3D visualization of the object template is

shown for adding or editing grasp points. The same dialog appears when editing an existing template.

If the template contains a collision model or a visualization model, this 3D model is visualized as well.

Roboception GmbH

Manual: rc_cube

118 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

This dialog provides two ways for setting grasp points:

1. Adding grasps manually: By clicking on the + symbol, a new grasp is placed in the object origin.
The grasp can be given a unique name which corresponds to its ID. The desired pose of the grasp

can be entered in the fields for Position and Roll/Pitch/Yaw which are given in the coordinate frame
of the object template represented by the long x, y and z axes in the visualization. The grasp point

can be placed freely with respect to the object template - inside, outside or on the surface. The

grasp point and its orientation are visualized in 3D for verification.

2. Adding grasps interactively: Grasp points can be added interactively by first clicking on the AddGrasp button in the upper right corner of the visualization and then clicking on the desired point
on the object template visualization. If the 3D model is displayed, the grasps will be attached to

the surface of the 3D model. Otherwise, the grasp is attached to the template surface. The grasp

orientation is a right-handed coordinate system and is chosen such that its z axis is perpendicular

to the surface pointing inside the template at the grasp position. The position and orientation in

the object coordinate frame is displayed on the right. The position and orientation of the grasp

can also be changed interactively. In case Snap to surface is disabled (default), the grasp can be
translated and rotated freely in all three dimensions by clicking on Move Grasp in the visualization
menu and then dragging the grasp along the appropriate axis to the desired position. The orienta-

tion of the grasp can also be changed by rotating the axis with the mouse. In case Snap to surface
is enabled in the visualization, the grasp can only be moved along the model surface.

Users can also specify a grasp priority by changing the Priority slider. A dedicated gripper can be selected
in the Gripper drop down field.
By activating the Replication check box, users can replicate the grasp around a custom axis. The repli-
cation axis and the resulting replicated grasps are visualized. The position and orientation of the repli-

cation axis relative to the object coordinate frame can be adjusted interactively by clicking on MoveReplication Axis in the visualization menu and then dragging the axis to the desired position and orien-
tation. The grasps are replicated within the specified rotation range at the selected rotation step size.

Users can cycle through a visualization of the replicated grasps by dragging the bar below Cycle throughn replicated grasps in the View Options section of the visualization menu. If a gripper is selected for the
grasp or a gripper has been chosen in the visualization menu, the gripper is also shown at the currently

selected grasp.

If the object template has symmetries, the grasps which are symmetric to the defined grasps can be

displayed along with their replications (if defined) by enabling . . . symmetries in the View Options section
of the visualization menu. The user can also cycle through a visualization of the symmetric grasps by

dragging the bar below Cycle through n symmetric grasps.
Setting grasp points via the REST-API

Grasp points can be set via the REST-API interface (Section 7.3) using the set_grasp or set_all_grasps
services (see Internal services, Section 6.2.4.12). A grasp consists of the template_id of the template to
which the grasp should be attached, an id uniquely identifying the grasp point and the pose. The pose
is given in the coordinate frame of the object template and consists of a position in meters and an
orientation as quaternion. A dedicated gripper can be specified through setting the gripper_id field.
The priority is specified by an integer value, ranging from -2 for very low, to 2 for very high with a step
size of 1. The replication origin is defined as a transformation in the object’s coordinate frame and the

x axis of the transformation corresponds to the replication axis. The replication range is controlled by

the min_x_deg and max_x_deg fields and the step size step_x_deg.

6.2.4.5 Setting the preferred orientation of the TCP

The SilhouetteMatch module determines the reachability of grasp points based on the preferred orien-tation of the gripper or TCP. The preferred orientation can be set via the set_preferred_orientation
service or on the SilhouetteMatch page in the Web GUI. The resulting direction of the TCP’s z axis is used
to reject grasps which cannot be reached by the gripper. Furthermore, the preferred orientation can be

used to sort the reachable grasps by setting the corresponding sorting strategy.

Roboception GmbH

Manual: rc_cube

119 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,

in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-

dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object

detection call, so that the preferred orientation can be used for filtering and, optionally, sorting the

grasps on the detected objects. If no preferred orientation is set, the orientation of the left camera is

used as the preferred orientation of the TCP.

6.2.4.6 Setting the sorting strategies

The objects and grasps returned by the detect_object service call are sorted according to a sorting
strategy which can be chosen by the user. The following sorting strategies are available and can be set

in the Web GUI (Section 7.1) or using the set_sorting_strategies service call:
• preferred_orientation: objects and grasp points with minimal rotation difference between their
orientation and the preferred orientation of the TCP are returned first,

• direction: objects and grasp points with the shortest distance along a defined direction vector
in a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a

combination of preferred_orientation and the minimal distance from the camera along the z axis of
the preferred orientation of the TCP.

6.2.4.7 Detection of objects

For triggering the object detection, in general, the following information must be provided to the Silhou-

etteMatch module:

• The template of the object to be detected in the scene.

• The coordinate frame in which the poses of the detected objects shall be returned (ref. Hand-eyecalibration, Section 6.2.4.8).
Optionally, further information can be given to the SilhouetteMatch module:

• A flag object_plane_detection determining whether the surface plane of the objects should be
used for the detection instead of the calibrated base plane.

• An offset, in case the calibrated base plane should be used but the objects are not lying on

this plane but on a plane parallel to it. The offset is the distance between both planes given in

the direction towards the camera. If omitted, an offset of 0 is assumed. It must not be set if

object_plane_detection is true.

• The ID of the load carrier which contains the objects to be detected.

• The ID of the region of interest where to search for the load carrier if a load carrier is set. Other-

wise, the ID of the region of interest where the objects should be detected. If omitted, objects are

matched in the whole image.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate

frame for the poses is external or the preferred orientation is given in the external frame.

• Collision detection information: The ID of the gripper to enable collision checking and optionally

a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below inCollisionCheck (Section 6.2.4.8).
In case the object_plane_detection flag is not true, objects can only be detected after a successful
base-plane calibration. It must be ensured that the position and orientation of the base plane does not

change before the detection of objects. Otherwise, the base-plane calibration must be renewed.

When object_plane_detection is set to true, a base-plane calibration is not required and an existing
base-plane calibration will be ignored. During detection, the scene is clustered into planar surfaces and

template matching is performed on each plane whose tilt with respect to the camera’s line of sight is

less than 25° and whose size is large enough to contain the selected template. When a match is found,

Roboception GmbH

Manual: rc_cube

120 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

its position and orientation are refined using the image edges and the point cloud inside the template’s

outer contour. For this, it is required that the outer contour of the template is closed and that the

object’s surface is planar.

On theWeb GUI the detection can be tested in the Try Out section of the SilhouetteMatch page. Different
image streams can be selected to show intermediate results and the final matches as shown in Fig. 6.15.

The “Template” image stream shows the template to be matched in red with the de-

fined grasp points in green (see Setting of grasp points, Section 6.2.4.4). The template
is warped to the size and tilt matching objects on the calibrated base plane or, in case

object_plane_detection was used, the highest segmented plane, would have. The cor-
responding plane is shown in dark blue.

The “Intermediate Result” image stream shows the edges of the left image that were used

to search for matches in light blue. The chosen region of interest is shown as bold petrol

rectangle. A shaded blue area on the left visualizes the region of the left camera image

which does not overlap with the right image, and in which no objects can be detected. If

object_plane_detection was used, this image stream also shows the detected planar clus-
ters in the scene. Clusters that were not used for matching, because they were too small or

too tilted, are visualized with a stripe pattern.

The “Intermediate Result Right” image stream shows the edges of the right image that

were used to search for matches in light blue. The chosen region of interest is shown as

bold petrol rectangle. A shaded blue area on the right visualizes the region of the right

camera image which does not overlap with the left image, and in which no objects can be

detected.

The “Result” image shows the detection result. The image edges that were used to refine

the match poses are shown in light blue and the matches (instances) with the template
edges are shown in red. The blue circles are the origins of the detected objects as defined in

the template and the green circles are the reachable grasp points. Colliding grasp points are

visualized as red dots.

Fig. 6.15: “Template”, “Intermediate Result” and “Result” image streams of the SilhouetteMatch module

as shown in the Web GUI for a detection with object_plane_detection set to true

The poses of the object origins in the chosen coordinate frame are returned as results in a list of

instances. In case the calibrated base plane was used for the detection (object_plane_detection
not set or false), the orientations of the detected objects are aligned with the normal of the base plane.

Otherwise, the orientations of the detected objects are aligned with the normal of a plane fitted to the

object points in the 3D point cloud.

If the chosen template also has grasp points attached, a list of grasps for all objects is returned in
addition to the list of detected objects. The grasp poses are given in the desired coordinate frame and

the grasps are sorted according to the selected sorting strategy (see Setting the sorting strategies, Section
6.2.4.6). There are references between the detected object instances and the grasps via their uuids.

In case the templates have a continuous rotational symmetry (e.g. cylindrical objects), all returned

object poses will have the same orientation. Furthermore, all grasps symmetric to each grasp point

on an object are checked for reachability and collisions, and only the best one according to the given

sorting strategy is returned.

Roboception GmbH

Manual: rc_cube

121 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

For objects with a discrete symmetry (e.g. prismatic objects), all collision-free symmetries of each grasp

point which are reachable according to the given preferred TCP orientation are returned, ordered by the

given sorting strategy.

The detection results and run times are affected by several run-time parameters which are listed and

explained further down. Improper parameters can lead to timeouts of the SilhouetteMatch module’s

detection process.

6.2.4.8 Interaction with other modules

Internally, the SilhouetteMatchmodule depends on, and interacts with other on-boardmodules as listed

below.

Note: All changes and configuration updates to these modules will affect the performance of the

SilhouetteMatch module.

Stereo camera and stereo matching

The SilhouetteMatch module makes internally use of the rectified images from the Camera module
(rc_camera, Section 6.1.1). Thus, the exposure time should be set properly to achieve the optimal per-
formance of the module.

For base-plane calibration in stereo mode, for load carrier detection, for automatic object plane de-

tection and for collision checking with the point cloud, the disparity images from the Stereo matching
module (rc_stereomatching, Section 6.1.2) are used.

For detecting objects with a calibrated base plane, without load carrier and without collision checking

with the point cloud, the stereo-matching module should not be run in parallel to the SilhouetteMatch

module, because the detection runtime increases.

For best results it is recommended to enable smoothing (Section 6.1.2.5) for Stereo matching.
IO and Projector Control

In case the rc_cube is used in conjunction with an external random dot projector and the IO and ProjectorControl module (rc_iocontrol, Section 6.3.4), the projector should be used for the stereo-based base-
plane calibration, for automatic object plane detection and for collision checking with the point cloud.

The projected pattern must not be visible in the left and right camera images during object detection as

it interferes with the matching process. Therefore, it is recommended to connect the projector to GPIO

Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matchingparameters, Section 6.1.2.5), so that on each image acquisition trigger an image with and without pro-
jector pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.3.4.1).
In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images (see Stereo camera parameters, Section 6.1.1.3).
Hand-eye calibration

In case the camera has been calibrated to a robot, the SilhouetteMatch module can automatically pro-

vide poses in the robot coordinate frame. For the SilhouetteMatch node’s Services (Section 6.2.4.11),
the frame of the input and output poses and plane coordinates can be controlled with the pose_frame
argument.

Two different pose_frame values can be chosen:

Roboception GmbH

Manual: rc_cube

122 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

1. Camera frame (camera). All poses and plane coordinates provided to and by the module are in
the camera frame.

2. External frame (external). All poses and plane coordinates provided to and by the module are in
the external frame, configured by the user during the hand-eye calibration process. The module

relies on the on-board Hand-eye calibration module (Section 6.3.1) to retrieve the camera mounting
(static or robot mounted) and the hand-eye transformation. If the sensor mounting is static, no

further information is needed. If the sensor is robot-mounted, the robot_pose is required to
transform poses to and from the external frame.

All pose_frame values that are not camera or external are rejected.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

Note: If the hand-eye calibration has changed after base-plane calibration, the base-plane calibration

will be marked as invalid and must be renewed.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame, the definition of the preferred TCP orientation and the sorting direction:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the preferred TCP orientation is defined in external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• In all other cases, providing the robot pose is optional.

If the current robot pose is provided during calibration, it is stored persistently on the rc_cube. If the
updated robot pose is later provided during get_base_plane_calibration or detect_object as well,
the base-plane calibration will be transformed automatically to this new robot pose. This enables the

user to change the robot pose (and thus camera position) between base-plane calibration and object

detection.

Note: Object detection can only be performed if the limit of 10 degrees angle offset between the

base plane normal and the camera’s line of sight is not exceeded.

LoadCarrier

The SilhouetteMatch module uses the load carrier detection functionality provided by the LoadCarrier
module (rc_load_carrier, Section 6.2.1), with the run-time parameters specified for this module. How-
ever, only one load carrier will be returned and used in case multiple matching load carriers could be

found in the scene. In case multiple load carriers of the same type are visible, a region of interest should

be set to ensure that always the same load carrier is used for the SilhouetteMatch module.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the SilhouetteMatch module by

passing a collision_detection argument to the detect_object service call. It contains the ID of

the used gripper and optionally a pre-grasp offset. The gripper has to be defined in the Grip-

perDB module (see Setting a gripper, Section 6.4.3.2) and details about collision checking are given
in Collision checking within other modules (Section 6.3.2.2). In addition to collision checking be-

tween the gripper and the detected load carrier, collisions between the gripper and the calibrated

base plane will be checked, if the run-time parameter check_collisions_with_base_plane is true.
If the selected SilhouetteMatch template contains a collision model and the run-time parameter

check_collisions_with_matches is true, also collisions between the gripper and all other detected ob-
jects (not limited to max_number_of_detected_objects) will be checked. The object on which the grasp
point to be checked is located, is excluded from the collision check.

Roboception GmbH

Manual: rc_cube

123 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

If the run-time parameter check_collisions_with_point_cloud is true, also collisions between the
gripper and a watertight version of the point cloud are checked. If this feature is used with suctions

grippers, it should be ensured that the TCP is defined to be outside the gripper geometry, or that the

grasp points are defined above the object surface. Otherwise every grasp will result in a collision be-

tween the gripper and the point cloud.

If collision checking is enabled, only grasps which are collision free will be returned. However, the

visualization images on the SilhouetteMatch page of the Web GUI also show colliding grasp points in red.
The objects which are considered in the collision check are also visualized with their edges in red.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-sionCheck Parameters (Section 6.3.2.3).
6.2.4.9 Parameters

The SilhouetteMatch software module is called rc_silhouettematch in the REST-API and is represented
in the Web GUI (Section 7.1)in the desired pipeline under Modules → SilhouetteMatch. The user can
explore and configure the rc_silhouettematch module’s run-time parameters, e.g. for development
and testing, using the Web GUI or the REST-API interface (Section 7.3).
Parameter overview

This module offers the following run-time parameters:

Roboception GmbH

Manual: rc_cube

124 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Table 6.28: The rc_silhouettematch module’s run-time parame-
ters

Name Type Min Max Default Description

check_collisions_with_-
base_plane

bool false true true Whether to check for

collisions between

gripper and base

plane

check_collisions_with_matches bool false true true Whether to check for

collisions between

gripper and detected

matches

check_collisions_with_-
point_cloud

bool false true false Whether to check for

collisions between

gripper and the point

cloud

edge_sensitivity float64 0.1 1.0 0.7 Sensitivity of the edge

detector

match_max_distance float64 0.1 10.0 3.0 Maximum allowed

distance in pixels be-

tween the template

and the detected

edges in the image

match_percentile float64 0.7 1.0 0.8 Percentage of tem-

plate pixels that must

be within the max-

imum distance to

successfully match the

template

max_number_of_detected_objects int32 1 20 10 Maximum number of

detected objects

only_highest_priority_grasps bool false true false Whether to return only

the highest priority

level grasps

point_cloud_enhancement string - - Off Type of enhancement

of the point cloud us-

ing the base plane:

[Off, ReplaceBright]

quality string - - High Quality: [Low, Medium,

High]

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s SilhouetteMatch page. The name in

the Web GUI is given in brackets behind the parameter name and the parameters are listed in the order

they appear in the Web GUI:

max_number_of_detected_objects (Maximum Object Number)

This parameter gives the maximum number of objects to detect in the scene. If

more than the given number of objects can be detected in the scene, only the

objects matching best to the given sorting strategy are returned.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH

Manual: rc_cube

125 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?max_

→˓number_of_detected_objects=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?max_number_of_detected_

→˓objects=<value>

quality (Quality)

Object detection can be performed on images with different resolutions: High (full
image resolution), Medium (half image resolution) and Low (quarter image resolu-
tion). The lower the resolution, the lower the detection time, but the fewer details

of the objects are visible.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?
→˓quality=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?quality=<value>

match_max_distance (Maximum Matching Distance)

This parameter gives the maximum allowed pixel distance of an image edge pixel

from the object edge pixel in the template to be still considered as matching. If the

object is not perfectly represented in the template, it might not be detected when

this parameter is low. High values, however, might lead to false detections in case

of a cluttered scene or the presence of similar objects, and also increase runtime.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?match_

→˓max_distance=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_max_distance=<value>

match_percentile (Matching Percentile)

This parameter indicates how strict the matching process should be. The match-

ing percentile is the ratio of template pixels that must be within the Maximum

Matching Distance to successfully match the template. The higher this number,

the more accurate the match must be to be considered as valid.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?match_

→˓percentile=<value>

Roboception GmbH

Manual: rc_cube

126 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_percentile=<value>

edge_sensitivity (Edge Sensitivity)

This parameter influences how many edges are detected in the left and right cam-

era images. The higher this number, the more edges are found in the intensity

images. That means, for lower numbers, only the most significant edges are con-

sidered for template matching. A large number of edges in the image might in-

crease the detection time. It must be ensured that the edges of the objects to be

detected are detected in both, the left and the right camera images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?edge_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?edge_sensitivity=<value>

only_highest_priority_grasps (Only Highest Priority Grasps)

If set to true, only grasps with the highest priority will be returned. If collision checking is

enabled, only the collision-free grasps among the group of grasps with the highest priority

are returned. This can save computation time and reduce the number of grasps to be parsed

on the application side.

Without collision checking, only grasps of highest priority are returned.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?only_

→˓highest_priority_grasps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?only_highest_priority_

→˓grasps=<value>

check_collisions_with_base_plane (Check Collisions with Base Plane)

If this parameter is set to true, and collision checking is enabled by passing a grip-

per to the detect_object service call, all grasp points will be checked for collisions
between the gripper and the calibrated base plane, and only grasp points at which

the gripper would not collide with the base plane will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_base_plane=<value>

API version 1 (deprecated)

Roboception GmbH

Manual: rc_cube

127 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓base_plane=<value>

check_collisions_with_matches (Check Collisions with Matches)

If this parameter is set to true, and collision checking is enabled by passing a

gripper to the detect_object service call, all grasp points will be checked for
collisions between the gripper and all other detected objects (not limited to

max_number_of_detected_objects), and only grasp points at which the gripper
would not collide with any other detected object will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_matches=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓matches=<value>

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

If this parameter is set to true, and collision checking is enabled by passing a grip-

per to the detect_object service call, all grasp points will be checked for collisions
between the gripper a watertight version of the point cloud, and only grasp points

at which the gripper would not collide with this point cloud will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓point_cloud=<value>

point_cloud_enhancement (Enhance with Base Plane)

This parameter is only considered when check_collisions_with_point_cloud is
true and the object detection was triggered without object_plane_detection. By
default, point_cloud_enhancement is set to Off (Off). If point_cloud_enhancement
is set to ReplaceBright (Replace Bright Image Pixels), the calibrated base plane will
be used to enhance the point cloud that is used for collision checking. For this,

the depth values of all bright image pixels inside the image or, if set, the 2D region

of interest will be set to the depth of the calibrated base plane. This parameter

should be used when dark objects are placed on an untextured bright background,

e.g. on a light table.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH

Manual: rc_cube

128 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?point_

→˓cloud_enhancement=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?point_cloud_enhancement=
→˓<value>

6.2.4.10 Status values

This module reports the following status values:

Table 6.29: The rc_silhouettematchmodule’s status values

Name Description

data_acquisition_time Time in seconds required by the last active service to acquire

images

last_timestamp_processed The timestamp of the last processed dataset

load_carrier_detection_time Processing time of the last load carrier detection in seconds

processing_time Processing time of the last detection (including load carrier

detection) in seconds

6.2.4.11 Services

The user can explore and call the rc_silhouettematch module’s services, e.g. for development and
testing, using the REST-API interface (Section 7.3) or the rc_cube Web GUI (Section 7.1).
The SilhouetteMatch module offers the following services.

detect_object

Triggers an object detection as described in Detection of objects (Section 6.2.4.7) and returns
the pose of all found object instances.

Details

All images used by the service are guaranteed to be newer than the service trigger time.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/detect_

→˓object

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_object

Request

Required arguments:

object_id in object_to_detect: ID of the template which should be detected.

pose_frame: see Hand-eye calibration (Section 6.2.4.8).
Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.4.8).

Roboception GmbH

Manual: rc_cube

129 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Optional arguments:

object_plane_detection: false if the objects are placed on a calibrated base
plane, true if the objects’ surfaces are planar and the base plane is unknown or

the objects are located on multiple different planes, e.g. stacks.

offset: offset in meters by which the base-plane calibration will be shifted to-
wards the camera.

load_carrier_id: ID of the load carrier which contains the items to be detected.

collision_detection: see Collision checking within other modules (Section 6.3.2.2).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"load_carrier_id": "string",
"object_plane_detection": "bool",
"object_to_detect": {
"object_id": "string",
"region_of_interest_2d_id": "string"

},
"offset": "float64",
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

The maximum number of returned instances can be controlled with the

max_number_of_detected_objects parameter.

object_id: ID of the detected template.

instances: list of detected object instances, ordered according to the chosen sorting strat-
egy.

grasps: list of grasps on the detected objects, ordered according to the chosen sorting strat-
egy. The instance_uuid gives the reference to the detected object in instances this grasp
belongs to. The list of returned grasps will be trimmed to the 100 best grasps if more reach-

able grasps are found. Each grasp contains a flag collision_checked and a gripper_id (seeCollision checking within other modules, Section 6.3.2.2).
load_carriers: list of detected load carriers.

Roboception GmbH

Manual: rc_cube

130 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_object",
"response": {
"grasps": [

{
"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"instance_uuid": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"instances": [

{
"grasp_uuids": [

"string"
],
"id": "string",
"object_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

(continues on next page)

Roboception GmbH

Manual: rc_cube

131 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {

"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {
"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"object_id": "string",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

calibrate_base_plane

Triggers the calibration of the base plane, as described in Base-plane calibration (Section
6.2.4.2).

Roboception GmbH

Manual: rc_cube

132 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Details

A successful base-plane calibration is stored persistently on the rc_cube and returned by this
service. The base-plane calibration is persistent over firmware updates and rollbacks.

All images used by the service are guaranteed to be newer than the service trigger time.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/
→˓calibrate_base_plane

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/calibrate_base_plane

Request

Required arguments:

plane_estimation_method: method to use for base-plane calibration. Valid values
are STEREO, APRILTAG, MANUAL.

pose_frame: see Hand-eye calibration (Section 6.2.4.8).
Potentially required arguments:

plane if plane_estimation_method is MANUAL: plane that will be set as base-plane
calibration.

robot_pose: see Hand-eye calibration (Section 6.2.4.8).
region_of_interest_2d_id: ID of the region of interest for base-plane calibration.

Optional arguments:

offset: offset in meters by which the estimated plane will be shifted towards the
camera.

plane_preference in stereo: whether the plane closest to or farthest from
the camera should be used as base plane. This option can be set only if

plane_estimation_method is STEREO. Valid values are CLOSEST and FARTHEST. If
not set, the default is FARTHEST.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"offset": "float64",
"plane": {

"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"plane_estimation_method": "string",
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

133 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"z": "float64"
},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"stereo": {

"plane_preference": "string"
}

}
}

Response

plane: calibrated base plane.

timestamp: timestamp of the image set the calibration ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "calibrate_base_plane",
"response": {

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

get_base_plane_calibration

Returns the configured base-plane calibration.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓base_plane_calibration

API version 1 (deprecated)

Roboception GmbH

Manual: rc_cube

134 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_base_plane_calibration

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.4.8).
Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.4.8).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_base_plane_calibration",
"response": {

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_base_plane_calibration

Deletes the configured base-plane calibration.

Details

This service can be called as follows.

Roboception GmbH

Manual: rc_cube

135 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/delete_

→˓base_plane_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_base_plane_

→˓calibration

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_base_plane_calibration",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_preferred_orientation

Persistently stores the preferred orientation of the gripper to compute the reachability of

the grasps, which is used for filtering and, optionally, sorting the grasps returned by the

detect_object service (see Setting the preferred orientation of the TCP, Section 6.2.4.5).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_

→˓preferred_orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Roboception GmbH

Manual: rc_cube

136 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the gripper to compute the reachability of the grasps,

which is used for filtering and, optionally, sorting the grasps returned by the detect_object
service (see Setting the preferred orientation of the TCP, Section 6.2.4.5).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓preferred_orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_preferred_orientation

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps and detected objects returned

by the detect_object service (see Detection of objects, Section 6.2.4.7).
Roboception GmbH

Manual: rc_cube

137 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_

→˓sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

If the weight for direction is set, the vector must contain the direction vector and
pose_framemust be either camera or external.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"preferred_orientation": {
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps and detected objects returned by the

detect_object service (see Detection of objects, Section 6.2.4.7).
Details

This service can be called as follows.

API version 2

Roboception GmbH

Manual: rc_cube

138 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"preferred_orientation": {
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest

detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/trigger_

→˓dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

139 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also resets

preferred orientation and sorting strategies. The reset does not apply to templates and

base-plane calibration.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/reset_

→˓defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

140 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

set_region_of_interest_2d (deprecated)

Persistently stores a 2D region of interest on the rc_cube.
Details

This service can be called as follows.

API version 2

This service is not available in API version 2. Use set_region_of_interest_2d (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_region_of_interest_2d

get_regions_of_interest_2d (deprecated)

Returns the configured 2D regions of interest with the requested

region_of_interest_2d_ids.

Details

This service can be called as follows.

API version 2

This service is not available in API version 2. Use get_regions_of_interest_2d (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_regions_of_interest_2d

delete_regions_of_interest_2d (deprecated)

Deletes the configured 2D regions of interest with the requested

region_of_interest_2d_ids.

Details

This service can be called as follows.

API version 2

This service is not available in API version 2. Use delete_regions_of_interest_2d (Section 6.4.2.4)
in rc_roi_db instead.

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_regions_of_interest_

→˓2d

6.2.4.12 Internal services

The following services for configuring grasps can change in future without notice. Setting, retrieving and

deleting grasps is recommend to be done via the Web GUI.

Note: Configuring grasps is global for all templates on the rc_cube and affects all camera pipelines.

Roboception GmbH

Manual: rc_cube

141 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

set_grasp

Persistently stores a grasp for the given object template on the rc_cube. All configured grasps
are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_

→˓grasp

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_grasp

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section 6.2.4.4).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"gripper_id": "string",
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}

(continues on next page)

Roboception GmbH

Manual: rc_cube

142 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_grasps

Replaces the list of grasps for the given object template on the rc_cube.
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_all_

→˓grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_all_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section 6.2.4.4).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

143 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_all_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grasps

Returns all configured grasps which have the requested grasp_ids and belong to the re-
quested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are re-
turned. If no template_ids are provided, all grasps with the requested grasp_ids are re-
turned. If neither IDs are provided, all configured grasps are returned.

Roboception GmbH

Manual: rc_cube

144 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_grasps",
"response": {
"grasps": [

{
"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}

(continues on next page)

Roboception GmbH

Manual: rc_cube

145 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

}
}

delete_grasps

Deletes all grasps with the requested grasp_ids that belong to the requested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/delete_

→˓grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are
deleted. The template_ids list must not be empty.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_symmetric_grasps

Returns all grasps that are symmetric to the given grasp.

Details

This service can be called as follows.

API version 2

Roboception GmbH

Manual: rc_cube

146 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓symmetric_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_symmetric_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section 6.2.4.4).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

The first grasp in the returned list is the one that was passed with the service call. If the

object template does not have an exact symmetry, only the grasp passed with the service

call will be returned. If the object template has a continuous symmetry (e.g. a cylindrical

object), only 12 equally spaced sample grasps will be returned.

Details for the definition of the grasp type are given in Setting of grasp points (Section 6.2.4.4).
The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

147 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

{
"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

}

6.2.4.13 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion.

Roboception GmbH

Manual: rc_cube

148 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Table 6.30: Return codes of the SilhouetteMatch module services

Code Description

0 Success

-1 An invalid argument was provided

-3 An internal timeout occurred, e.g. during object detection

-4 Data acquisition took longer than allowed

-7 Data could not be read or written to persistent storage

-8 Module is not in a state in which this service can be called. E.g. detect_object cannot be
called if there is no base-plane calibration.

-10 New element could not be added as the maximum storage capacity of regions of interest or

templates has been exceeded

-100 An internal error occurred

-101 Detection of the base plane failed

-102 The hand-eye calibration changed since the last base-plane calibration

-104 Offset between the base plane normal and the camera’s line of sight exceeds 10 degrees

10 The maximum storage capacity of regions of interest or templates has been reached

11 An existing element was overwritten

100 The requested load carrier was not detected in the scene

101 None of the detected grasps is reachable

102 The detected load carrier is empty

103 All detected grasps are in collision

107 The base plane was not transformed to the current camera pose, e.g. because no robot

pose was provided during base-plane calibration

108 The template is deprecated.

109 The plane for object detection does not fit to the load carrier, e.g. objects are below the

load carrier floor.

111 The detection result’s pose could not be refined with the point cloud because the template’s

outer contour is not closed.

151 The object template has a continuous symmetry

999 Additional hints for application development

6.2.4.14 Template API

For template upload, download, listing and removal, special REST-API endpoints are provided. Tem-

plates can also be uploaded, downloaded and removed via the Web GUI. The templates include the

grasp points, if grasp points have been configured. Up to 50 templates can be stored persistently on

the rc_cube.
GET /templates/rc_silhouettematch

Get list of all rc_silhouettematch templates.

Template request

GET /api/v2/templates/rc_silhouettematch HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

Roboception GmbH

Manual: rc_cube

149 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Template)
• 404 Not Found – node not found

Referenced Data Models

• Template (Section 7.3.4)
GET /templates/rc_silhouettematch/{id}

Get a rc_silhouettematch template. If the requested content-type is application/octet-stream, the

template is returned as file.

Template request

GET /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)
Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns Template)
• 404 Not Found – node or template not found

Referenced Data Models

• Template (Section 7.3.4)
PUT /templates/rc_silhouettematch/{id}

Create or update a rc_silhouettematch template.

Template request

PUT /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Roboception GmbH

Manual: rc_cube

150 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. Detection modules

Form Parameters

• file – template or dxf file (required)
• object_height – object height inmeters, required when uploading dxf (optional)
• units –Units for dxf file if not embedded in dxf (one of mm, cm, m, in, ft) (optional)

Request Headers

• Accept –multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Template)
• 400 Bad Request – Template is not valid or max number of templates reached

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-

ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.3.4)
DELETE /templates/rc_silhouettematch/{id}

Remove a rc_silhouettematch template.

Template request

DELETE /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)
Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-

ule.

• 404 Not Found – node or template not found

6.2.5 CADMatch

6.2.5.1 Introduction

The CADMatch module is an optional module of the rc_cube and requires a separate CADMatch license
(Section 9.5) to be purchased.

Roboception GmbH

Manual: rc_cube

151 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. Detection modules

Note: This module is not available in camera pipelines of type blaze.

This module provides an out-of-the-box perception solution for 3D object detection and grasping. CAD-

Match targets the detection of 3D objects based on a CAD template for picking with a general gripper.

The objects can be located in a bin or placed arbitrarily in the field of view of the camera.

For the CADMatch module to work, special object templates are required for each type of object to be

detected. Please get in touch with the Roboception support (Contact, Section 11) to order a template for
your CAD file.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-

tive camera pipeline and have no influence on other pipelines running on the rc_cube.
However, the object templates, grasp points and pose priors are stored globally. Setting, changing or

deleting an object template, its grasps or pose priors affects all camera pipelines.

The CADMatch module offers:

• A dedicated page on the rc_cube Web GUI (Section 7.1) for easy setup, configuration, testing, and
application tuning.

• A REST-API interface (Section 7.3) and a KUKA Ethernet KRL Interface (Section 7.4).
• The definition of regions of interest to select relevant volumes in the scene (see RoiDB, Section
6.4.2).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier, Section 6.2.1),
to provide grasps for objects inside a bin only.

• The definition of compartments inside a load carrier to provide grasps for specific volumes of the

bin only.

• The option to use user-defined object pose priors.

• Storing of up to 50 templates.

• The definition of up to 100 grasp points for each template via an interactive visualization in the

Web GUI.

• Collision checking between the gripper and the load carrier, other detected objects and/or the

point cloud.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-tion (Section 6.3.1) module, to provide grasps in the user-configured external reference frame.
• Selection of a sorting strategy to sort the detected objects and returned grasps.

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

6.2.5.2 Setting of grasp points

The CADMatch module detects 3D objects in a scene based on a CAD template and returns the poses

of the object origins. To use CADMatch directly in a robot application, up to 100 grasp points can be

defined for each template. A grasp point represents the desired position and orientation of the robot’s

TCP (Tool Center Point) to grasp an object.

Please consult Setting of grasp points (Section 6.2.4.4) for further details.
Setting grasp points in the Web GUI

The rc_cube Web GUI provides an intuitive and interactive way of defining grasp points for object tem-
plates. In a first step, the object template has to be uploaded to the rc_cube. This can be done in the

Roboception GmbH

Manual: rc_cube

152 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Web GUI in any pipeline under Modules → CADMatch by clicking on + Add a new Template in the Tem-plates, Grasps and Pose Priors section, or in Database→ Templates in the CADMatch Templates, Grasps andPose Priors section. Once the template upload is complete, a dialog with a 3D visualization of the object
template is shown for adding or editing grasp points. The same dialog appears when editing an existing

template.

More details are given in Setting grasp points in the Web GUI (Section 6.2.4.4).
Setting grasp points via the REST-API

Grasp points can be set via the REST-API interface (Section 7.3) using the set_grasp or set_all_grasps
services (see Internal services, Section 6.2.5.11).
More details are given in Setting grasp points via the REST-API (Section 6.2.4.4).
6.2.5.3 Setting of pose priors

The CADMatch module offers the possibility to define prior poses of the objects to be detected. If a

pose prior is given, the object detection will use this pose prior and only refine the given pose. This

speeds up the detection significantly. A pose prior represents the approximate position and orientation

of the object to be detected. The pose can be defined in the camera or the external coordinate frame,

if a hand-eye calibration is available.

Each pose prior consists of an id which must be unique within all pose priors for an object template,
the template_id representing the template the pose prior applies to, the pose and the pose_frame
of the prior. Pose priors can be set via the REST-API interface (Section 7.3), or by using the interactive
visualization in the Web GUI. The Web GUI allows to interactively position the object in the current point

cloud. This can be done in the “Pose Priors” tab during editing a template.

Pose priors should be used in applications where the approximate object poses are known beforehand.

The rc_cube can store up to 50 pose priors per template.
6.2.5.4 Setting the preferred orientation of the TCP

The CADMatch module determines the reachability of grasp points based on the preferred orientation
of the gripper or TCP. The preferred orientation can be set via the set_preferred_orientation service
call or on the CADMatch page in the Web GUI. The resulting direction of the TCP’s z axis is used to reject
grasps which cannot be reached by the gripper. Furthermore, the preferred orientation can be used to

sort the reachable grasps by setting the corresponding sorting strategy.

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,

in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-

dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object

detection call, so that the preferred orientation can be used for filtering and, optionally, sorting the

grasps on the detected objects. If no preferred orientation is set, the orientation of the left camera is

used as the preferred orientation of the TCP.

6.2.5.5 Setting the sorting strategies

The objects and grasps returned by the detect_object service call are sorted according to a sorting
strategy which can be chosen by the user. The following sorting strategies are available and can be set

in the Web GUI (Section 7.1) or using the set_sorting_strategies service call:
• gravity: highest matches and grasp points along the gravity direction are returned first,

• match_score: matches with the highest match score and grasp points on objects with the highest
match score are returned first,

Roboception GmbH

Manual: rc_cube

153 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

• preferred_orientation: matches and grasp points with minimal rotation difference between
their orientation and the preferred orientation of the TCP are returned first,

• direction: matches and grasp points with the shortest distance along a defined direction vector
in a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a

combination of match_score and theminimal distance from the camera along the z axis of the preferred
orientation of the TCP.

6.2.5.6 Detection of objects

The CADMatch module requires an object template for object detection. This template contains infor-

mation about the 3D shape of the object and prominent edges that can be visible in the camera images.

CADMatch also supports partial object templates, which contain only a specific part of the object that

can be detected well, e.g., in case of occlusions. Furthermore, templates can require a pose prior for

the detection which is then only refined using the image data.

The object detection is a two-stage process consisting of a prior estimation step and a pose refinement

step. First, a pose prior is computed based on the appearance of the object in the camera images.

Second, the pose is refined by using the 3D point cloud and edges in the camera image. For this to

work, the objects to detect must be visible in both left and right camera images. If pose priors are given,

only the pose refinement step is performed based, which decreases runtime significantly.

For triggering the object detection, in general, the following information must be provided to the CAD-

Match module:

• The template ID of the object to be detected in the scene.

• The coordinate frame in which the poses of the detected objects and the grasp points shall be

returned (ref. Hand-eye calibration, Section 6.2.5.7).
Optionally, further information can be given to the CADMatch module:

• The IDs of the pose priors which approximately match the poses of the objects to be detected. In

case a template is used that requires a pose prior, one or more pose prior IDs have to be provided.

• The ID of the load carrier which contains the items to be detected.

• A compartment inside the load carrier where to detect objects (see Load carrier compartments,
Section 6.4.1.3).

• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.

Otherwise, the ID of the 3D region of interest where to search for the objects.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate

frame for the poses is external, or the preferred orientation is given in the external frame, or the
chosen region of interest is defined in the external frame.

• Collision detection information: The ID of the gripper to enable collision checking and optionally

a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below inCollisionCheck (Section 6.2.5.7).
• Data acquisition mode: The user can choose if a new image dataset is acquired for the detection

(default), or if the detection should be performed on the previously used image dataset. This saves

data acquisition time, e.g. in case several detections with different templates have to be run on

the same image.

On the Web GUI the detection can be tested in the Try Out section of the CADMatch module’s page.
The detected objects are returned in a list of matches, sorted according to the selected sorting strat-
egy (see Setting the sorting strategies, Section 6.2.5.5). Each detected object includes a uuid (Universally
Unique Identifier) and the timestamp of the oldest image that was used to detect it. The pose of a
detected object corresponds to the pose of the origin of the object template used for detection. Fur-

thermore, the matching score is given to indicate the quality of the detection.

Roboception GmbH

Manual: rc_cube

154 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

If the chosen template also has grasp points attached (see Setting of grasp points, Section 6.2.5.2), a list
of grasps for all objects is returned in addition to the list of detected objects. The grasps are sorted
according to the selected sorting strategy (see Setting the sorting strategies, Section 6.2.5.5). The grasp
poses are given in the desired coordinate frame. There are references between the detected objects

and the grasps via their uuids.

For objects with a discrete symmetry (e.g. prismatic objects), all collision-free symmetries of each grasp

point which are reachable according to the given preferred TCP orientation are returned, ordered by the

given sorting strategy.

For objects with a continuous symmetry (e.g. cylindrical objects), all grasps symmetric to each grasp

point on an object are checked for reachability and collisions, and only the best one according to the

given sorting strategy is returned.

Note: The first detection call with a new object template takes longer than the following detection

calls, because the object template has to be loaded into the CADMatchmodule first. To avoid this, the

warmup_template service can be used to load a template so that it is ready when the first detection
is triggered.

6.2.5.7 Interaction with other modules

Internally, the CADMatch module depends on, and interacts with other on-board modules as listed

below.

Note: All changes and configuration updates to these modules will affect the performance of the

CADMatch modules.

Stereo camera and Stereo matching

The CADMatch module makes internally use of the following data:

• Rectified images from the Cameramodule (rc_camera, Section 6.1.1);
• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,
Section 6.1.2).

The quality parameter of the stereo matching module must be set to Medium or higher (see Parameters,
Section 6.1.2.5). We recommend Full or High quality for using CADMatch.

All processed images are guaranteed to be captured after the module trigger time.

IO and Projector Control

In case the rc_cube is used in conjunction with an external random dot projector and the IO and ProjectorControl module (rc_iocontrol, Section 6.3.4), it is recommended to connect the projector to GPIO Out
1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matching pa-rameters, Section 6.1.2.5), so that on each image acquisition trigger an image with and without projector
pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.3.4.1).
In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images (see Stereo camera parameters, Section 6.1.1.3).

Roboception GmbH

Manual: rc_cube

155 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Hand-eye calibration

In case the camera has been calibrated to a robot, the CADMatch module can automatically provide

poses in the robot coordinate frame. For the CADMatch node’s Services (Section 6.2.5.10), the frame of
the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no prior
knowledge about the pose of the camera in the environment is required. This means that the

configured regions of interest and load carriersmovewith the camera. It is the user’s responsibility

to update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-

board Hand-eye calibration module (Section 6.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is

needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame, the definition of the preferred TCP orientation and the sorting direction:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the preferred TCP orientation is defined in external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• In all other cases, providing the robot pose is optional.

LoadCarrier

The CADMatch module uses the load carrier detection functionality provided by the LoadCarriermodule
(rc_load_carrier, Section 6.2.1), with the run-time parameters specified for this module. However,
only one load carrier will be returned and used in case multiple matching load carriers could be found

in the scene. In case multiple load carriers of the same type are visible, a region of interest should be

set to ensure that always the same load carrier is used for the CADMatch module.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the CADMatch module by passing a

collision_detection argument to the detect_object service call. It contains the ID of the used gripper
and optionally a pre-grasp offset. The gripper has to be defined in the GripperDB module (see Settinga gripper, Section 6.4.3.2) and details about collision checking are given in Collision checking within othermodules (Section 6.3.2.2).
If the selected CADMatch template contains a collision geometry and the run-time parameter

check_collisions_with_matches is true, also collisions between the gripper and all other detected
objects (not limited to max_matches) will be checked. The object on which the grasp point to be checked
is located, is excluded from the collision check.

If the run-time parameter check_collisions_with_point_cloud is true, also collisions between the
gripper and a watertight version of the point cloud are checked. If this feature is used with suctions

grippers, it should be ensured that the TCP is defined to be outside the gripper geometry, or that the

grasp points are defined above the object surface. Otherwise every grasp will result in a collision be-

tween the gripper and the point cloud.

Roboception GmbH

Manual: rc_cube

156 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

If collision checking is enabled, only grasps which are collision free will be returned. However, the result

image on top of the CADMatch page of the Web GUI also shows colliding grasp points in red. The objects
which are considered in the collision check are also visualized with their edges in red.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-sionCheck Parameters (Section 6.3.2.3).
6.2.5.8 Parameters

The CADMatch module is called rc_cadmatch in the REST-API and is represented in theWeb GUI (Section
7.1) in the desired pipeline under Modules → CADMatch. The user can explore and configure the
rc_cadmatch module’s run-time parameters, e.g. for development and testing, using the Web GUI or
the REST-API interface (Section 7.3).
Parameter overview

This module offers the following run-time parameters:

Table 6.31: The rc_cadmatchmodule’s run-time parameters

Name Type Min Max Default Description

check_collisions_with_matches bool false true true Whether to check for

collisions between

gripper and detected

matches

check_collisions_with_-
point_cloud

bool false true false Whether to check for

collisions between

gripper and point

cloud

edge_max_distance float64 0.5 5.0 2.0 Maximum allowed

distance in pixels be-

tween the template

edges and the de-

tected edges in the

image

edge_sensitivity float64 0.05 1.0 0.5 Sensitivity of the edge

detector

grasp_filter_-
orientation_threshold

float64 0.0 180.0 45.0 Maximum allowed ori-

entation change be-

tween grasp and pre-

ferred orientation in

degrees

max_matches int32 1 30 10 Maximum number of

matches

min_score float64 0.05 1.0 0.3 Minimum score for

matches

only_highest_priority_grasps bool false true false Whether to return only

the highest priority

level grasps

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s CADMatch page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order

they appear in the Web GUI:

Roboception GmbH

Manual: rc_cube

157 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

max_matches (Maximum Matches)

is the maximum number of objects to detect.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?max_matches=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?max_matches=<value>

min_score (Minimum Score)

is the minimum detection score after refinement. The higher this value, the better

2D edges and 3D point cloud must match the given template.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?min_score=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?min_score=<value>

edge_sensitivity (Edge Sensitivity)

is the sensitivity of the edge detector. The higher the value of this parameter, the

more edges will be used for pose refinement.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?edge_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?edge_sensitivity=<value>

edge_max_distance (Maximum Edge Distance)

is the maximum allowed distance in pixels between the template edges and the

detected edges in the image during the refinement step.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?edge_max_

→˓distance=<value>

API version 1 (deprecated)

Roboception GmbH

Manual: rc_cube

158 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?edge_max_distance=<value>

grasp_filter_orientation_threshold (Grasp Orientation Threshold)

is the maximum deviation of the TCP’s z axis at the grasp point from the z axis of

the TCP’s preferred orientation in degrees. Only grasp points which are within this

threshold are returned. When set to zero, any deviations are valid.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?grasp_filter_

→˓orientation_threshold=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?grasp_filter_orientation_

→˓threshold=<value>

only_highest_priority_grasps (Only Highest Priority Grasps)

If set to true, only grasps with the highest priority will be returned. If collision checking is

enabled, only the collision-free grasps among the group of grasps with the highest priority

are returned. This can save computation time and reduce the number of grasps to be parsed

on the application side.

Without collision checking, only grasps of highest priority are returned.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?only_highest_

→˓priority_grasps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?only_highest_priority_grasps=
→˓<value>

check_collisions_with_matches (Check Collisions with Matches)

If this parameter is set to true, and collision checking is enabled by passing a grip-

per to the detect_object service call, all grasp points will be checked for collisions
between the gripper and all other detected objects (not limited to max_matches),
and only grasp points at which the gripper would not collide with any other de-

tected object will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_with_matches=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_with_matches=
→˓<value>

Roboception GmbH

Manual: rc_cube

159 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

If this parameter is set to true, and collision checking is enabled by passing a grip-

per to the detect_object service call, all grasp points will be checked for collisions
between the gripper a watertight version of the point cloud, and only grasp points

at which the gripper would not collide with this point cloud will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_with_point_

→˓cloud=<value>

6.2.5.9 Status values

The rc_cadmatchmodule reports the following status values:

Table 6.32: The rc_cadmatchmodule’s status values

Name Description

data_acquisition_time Time in seconds required by the last active service to acquire

images

last_timestamp_processed The timestamp of the last processed dataset

last_request_timestamp The timestamp of the last detection request

load_carrier_detection_time Processing time of the last load carrier detection in seconds

object_detection_time Processing time of the last last object detection in seconds

processing_time Processing time of the last detection (including load carrier

detection) in seconds

state The current state of the rc_cadmatch node

The reported state can take one of the following values.

Table 6.33: Possible states of the CADMatch module

State name Description

IDLE The module is idle.

RUNNING The module is running and ready for load carrier detection and object detection.

FATAL A fatal error has occurred.

6.2.5.10 Services

The user can explore and call the rc_cadmatch module’s services, e.g. for development and testing,
using the REST-API interface (Section 7.3) or the rc_cube Web GUI (Section 7.1).
The CADMatch modules offer the following services.

detect_object

Triggers the detection of objects as described in Detection of objects (Section 6.2.5.6) based
on an object template.

Details

Roboception GmbH

Manual: rc_cube

160 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/detect_object

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/detect_object

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.5.7).
template_id: the ID of the template to be detected.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.5.7).
pose_prior_ids: IDs of the pose priors for the items to be detected. In
case the chosen template requires a pose prior for the detection, this

argument must be provided.

Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be detected.

load_carrier_compartment: compartment inside the load carrier where to detect
items (see Load carrier compartments, Section 6.4.1.3).
region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest

where to search for the objects.

collision_detection: see Collision checking within other modules (Section 6.3.2.2).
data_acquisition_mode: if set to CAPTURE_NEW (default), a new image dataset will
be used for the detection. If set to USE_LAST the previous dataset will be used for
the detection.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"data_acquisition_mode": "string",
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

161 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"z": "float64"
},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"pose_prior_ids": [
"string"

],
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
}

Response

grasps: list of grasps on the detected objects, ordered according to the chosen sorting strat-
egy. The match_uuid gives the reference to the detected object in matches this grasp belongs
to. The list of returned grasps will be trimmed to the 100 best grasps if more reachable

grasps are found. Each grasp contains a flag collision_checked and a gripper_id (seeCollision checking within other modules, Section 6.3.2.2).
load_carriers: list of detected load carriers.

matches: list of detected objects matching the template. The matches are ordered accord-
ing to the chosen sorting strategy. The score indicates how well the object matches the
template. The grasp_uuids refer to the grasps in grasps which are reachable on this object.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_object",
"response": {
"grasps": [

{
"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"match_uuid": "string",
"pose": {
"orientation": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

162 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {

"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {
"x": "float64",
"y": "float64"

},
"type": "string"

}
],

(continues on next page)

Roboception GmbH

Manual: rc_cube

163 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"matches": [
{

"grasp_uuids": [
"string"

],
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"score": "float32",
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

set_preferred_orientation

Persistently stores the preferred orientation of the gripper to compute the reachability of

the grasps, which is used for filtering and, optionally, sorting the grasps returned by the

detect_object service (see Setting the preferred orientation of the TCP, Section 6.2.5.4).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

164 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the gripper to compute the reachability of the grasps,

which is used for filtering and, optionally, sorting the grasps returned by the detect_object
service (see Setting the preferred orientation of the TCP, Section 6.2.5.4).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_preferred_orientation

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH

Manual: rc_cube

165 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps and matches returned by the

detect_object service (see Detection of objects, Section 6.2.5.6).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

If the weight for direction is set, the vector must contain the direction vector and
pose_framemust be either camera or external.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"match_score": {

"weight": "float64"
},
"preferred_orientation": {
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

166 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps and matches returned by the

detect_object service (see Detection of objects, Section 6.2.5.6).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"match_score": {

"weight": "float64"
},
"preferred_orientation": {
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

(continues on next page)

Roboception GmbH

Manual: rc_cube

167 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

}
}

}

warmup_template

Loads a template so that it is ready when the first detection with this template is triggered.

Without using this service, the first detection with a new template takes longer than the

following ones, because the template is then loaded at the first detection.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/warmup_template

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/warmup_template

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"template_id": "string"
}

}

The template_id is the ID of the template to be loaded into the CADMatch module.

Response

The definition for the response with corresponding datatypes is:

{
"name": "warmup_template",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

start

Starts the module. If the command is accepted, the module moves to state RUNNING.

Details

The current_state value in the service response may differ from RUNNING if the state tran-
sition is still in process when the service returns.

This service can be called as follows.

API version 2

Roboception GmbH

Manual: rc_cube

168 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/start

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module. If the command is accepted, the module moves to state IDLE.

Details

The current_state value in the service response may differ from IDLE if the state transition
is still in process when the service returns.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/stop

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest

detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

Roboception GmbH

Manual: rc_cube

169 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/trigger_dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also resets

preferred orientation and sorting strategies. The reset does not apply to templates.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

170 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest (deprecated)

Persistently stores a 3D region of interest on the rc_cube.
Details

This service can be called as follows.

API version 2

This service is not available in API version 2. Use set_region_of_interest (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_region_of_interest

get_regions_of_interest (deprecated)

Returns the configured 3D regions of interest with the requested region_of_interest_ids.

Details

This service can be called as follows.

API version 2

This service is not available in API version 2. Use get_regions_of_interest (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_regions_of_interest

delete_regions_of_interest (deprecated)

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.

Details

This service can be called as follows.

API version 2

This service is not available in API version 2. Use delete_regions_of_interest (Section 6.4.2.4) in
rc_roi_db instead.

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_regions_of_interest

Roboception GmbH

Manual: rc_cube

171 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

6.2.5.11 Internal services

The following services for configuring grasps and pose priors can change in future without notice. Set-

ting, retrieving and deleting grasps and pose priors is recommended to be done via the Web GUI.

Note: Configuring grasps and pose priors is global for all templates on the rc_cube and affects all
camera pipelines.

set_grasp

Persistently stores a grasp for the given object template on the rc_cube. All configured grasps
are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_grasp

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_grasp

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section 6.2.5.2).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"gripper_id": "string",
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

172 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_grasps

Replaces the list of grasps for the given object template on the rc_cube.
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_all_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_all_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section 6.2.5.2).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH

Manual: rc_cube

173 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_all_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grasps

Returns all configured grasps which have the requested grasp_ids and belong to the re-
quested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_grasps

API version 1 (deprecated)

Roboception GmbH

Manual: rc_cube

174 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are re-
turned. If no template_ids are provided, all grasps with the requested grasp_ids are re-
turned. If neither IDs are provided, all configured grasps are returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_grasps",
"response": {
"grasps": [

{
"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

(continues on next page)

Roboception GmbH

Manual: rc_cube

175 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

(continued from previous page)

},
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_grasps

Deletes all grasps with the requested grasp_ids that belong to the requested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/delete_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are
deleted. The template_ids list must not be empty.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

176 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

get_symmetric_grasps

Returns all grasps that are symmetric to the given grasp.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_symmetric_

→˓grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_symmetric_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section 6.2.5.2).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

Roboception GmbH

Manual: rc_cube

177 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

The first grasp in the returned list is the one that was passed with the service call. If the

object template does not have an exact symmetry, only the grasp passed with the service

call will be returned. If the object template has a continuous symmetry (e.g. a cylindrical

object), only 12 equally spaced sample grasps will be returned.

Details for the definition of the grasp type are given in Setting of grasp points (Section 6.2.5.2).
The definition for the response with corresponding datatypes is:

{
"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

}

set_pose_prior

Persistently stores a pose prior for the given object template on the rc_cube. All configured
pose priors are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

Roboception GmbH

Manual: rc_cube

178 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_pose_prior

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_pose_prior

Request

Details for the definition of the pose_prior type are given in Setting of pose priors (Section
6.2.5.3).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_prior": {
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_pose_prior",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_pose_priors

Replaces the list of pose priors for the given object template on the rc_cube.
Details

This service can be called as follows.

API version 2

Roboception GmbH

Manual: rc_cube

179 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_all_pose_

→˓priors

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_all_pose_priors

Request

Details for the definition of the pose_prior type are given in Setting of pose priors (Section
6.2.5.3).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_priors": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_all_pose_priors",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_pose_priors

Returns all configured pose priors which have the requested pose_prior_ids and belong to
the requested template_ids.

Details

This service can be called as follows.

Roboception GmbH

Manual: rc_cube

180 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_pose_priors

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_pose_priors

Request

If no pose_prior_ids are provided, all pose priors belonging to the requested template_ids
are returned. If no template_ids are provided, all pose priors with the requested
pose_prior_ids are returned. If neither IDs are provided, all configured pose priors are

returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_prior_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_pose_priors",
"response": {
"pose_priors": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

181 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

delete_pose_priors

Deletes all pose priors with the requested pose_prior_ids that belong to the requested
template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/delete_pose_

→˓priors

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_pose_priors

Request

If no pose_prior_ids are provided, all pose priors belonging to the requested template_ids
are deleted. The template_ids list must not be empty.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_prior_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_pose_priors",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.5.12 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Roboception GmbH

Manual: rc_cube

182 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.2. Detection modules

Table 6.34: Return codes of the CADMatch services

Code Description

0 Success

-1 An invalid argument was provided.

-2 An internal error occurred.

-3 An internal timeout occurred.

-4 Data acquisition took longer than allowed.

-8 Not applicable, stereo quality must be at least Medium.

-9 No valid license for the module.

-10 New element could not be added as the maximum storage capacity of load carriers or

regions of interest has been exceeded.

-11 Sensor not connected, not supported or not ready.

10 The maximum storage capacity of load carriers or regions of interest has been reached.

11 Existing data was overwritten.

100 The requested load carrier was not detected in the scene.

101 None of the detected grasps is reachable.

102 The detected load carrier is empty.

103 All detected grasps are in collision.

106 The list of returned grasps has been trimmed to the 100 best grasps.

110 Hints for setting up the application, e.g. reducing the distance from the camera, setting a

region of interest.

151 The object template has a continuous symmetry.

152 The objects are outside the given region of interest, outside the load carrier or outside the

image.

153 No edges could be detected in the camera image. Check the Edge Sensitivity.

999 Additional hints for application development

6.2.5.13 Template API

For template upload, download, listing and removal, special REST-API endpoints are provided. Tem-

plates can also be uploaded, downloaded and removed via the Web GUI. The templates include the

grasp points and pose priors, if grasp points or pose priors have been configured. Up to 50 templates

can be stored persistently on the rc_cube.
GET /templates/rc_cadmatch

Get list of all rc_cadmatch templates.

Template request

GET /api/v2/templates/rc_cadmatch HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Template)
Roboception GmbH

Manual: rc_cube

183 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.2. Detection modules

• 404 Not Found – node not found

Referenced Data Models

• Template (Section 7.3.4)
GET /templates/rc_cadmatch/{id}

Get a rc_cadmatch template. If the requested content-type is application/octet-stream, the tem-

plate is returned as file.

Template request

GET /api/v2/templates/rc_cadmatch/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)
Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns Template)
• 404 Not Found – node or template not found

Referenced Data Models

• Template (Section 7.3.4)
PUT /templates/rc_cadmatch/{id}

Create or update a rc_cadmatch template.

Template request

PUT /api/v2/templates/rc_cadmatch/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)
Form Parameters

• file – template file (required)
Request Headers

Roboception GmbH

Manual: rc_cube

184 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Configuration modules

• Accept –multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Template)
• 400 Bad Request – Template is not valid or max number of templates reached

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-

ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.3.4)
DELETE /templates/rc_cadmatch/{id}

Remove a rc_cadmatch template.

Template request

DELETE /api/v2/templates/rc_cadmatch/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)
Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-

ule.

• 404 Not Found – node or template not found

6.3 Configuration modules

The rc_cube provides several configuration modules which enable the user to configure the rc_cube for
specific applications.

The configuration modules are:

• Hand-eye calibration (rc_hand_eye_calibration, Section 6.3.1) enables the user to calibrate
the camera with respect to a robot, either via the Web GUI or the REST-API.

• CollisionCheck (rc_collision_check, Section 6.3.2) provides an easy way to check if a gripper is
in collision.

• Camera calibration (rc_stereocalib, Section 6.3.3) enables the user to check and perform cam-
era calibration via the WEB GUI (Section 7.1).

Roboception GmbH

Manual: rc_cube

185 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Configuration modules

• IO and Projector Control (rc_iocontrol, Section 6.3.4) provides control over the sensor’s gen-
eral purpose inputs and outputs with special modes for controlling an external random dot

projector.

These modules are pipeline specific, which means that they run inside each camera pipeline. Changes

to their settings or parameters only affect the corresponding pipeline and have no influence on the

other camera pipelines running on the rc_cube.

6.3.1 Hand-eye calibration

For applications, in which the camera is integrated into one or more robot systems, it needs to be

calibrated w.r.t. some robot reference frames. For this purpose, the rc_cube is shipped with an on-
board calibration routine called the hand-eye calibration module. It is a base module which is available
on every rc_cube.
Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-

tive camera pipeline and have no influence on other pipelines running on the rc_cube.
Note: The implemented calibration routine is completely agnostic about the user-defined robot

frame to which the camera is calibrated. It might be a robot’s end-effector (e.g., flange or tool cen-

ter point) or any point on the robot structure. The method’s only requirement is that the pose (i.e.,

translation and rotation) of this robot frame w.r.t. a user-defined external reference frame (e.g.,

world or robot mounting point) is exactly observable by the robot controller and can be reported to

the calibration module.

The Calibration routine (Section 6.3.1.3) itself is an easy-to-use multi-step procedure using a calibration
grid which can be obtained from Roboception.

6.3.1.1 Calibration interfaces

The following two interfaces are offered to conduct hand-eye calibration:

1. All services and parameters of this module required to conduct the hand-eye calibration program-

matically are exposed by the rc_cube’s REST-API interface (Section 7.3). The respective node name
of this module is rc_hand_eye_calibration and the respective service calls are documented Ser-vices (Section 6.3.1.5).
Note: The described approach requires a network connection between the rc_cube and the
robot controller to pass robot poses from the controller to the rc_cube’s calibration module.

2. For use cases where robot poses cannot be passed programmatically to the rc_cube’s hand-eye
calibration module, the Web GUI’s Hand-Eye Calibration page under Configuration in the desired
pipeline offers a guided process to conduct the calibration routinemanually.

Note: During the process, the described approach requires the user to manually enter into

the Web GUI robot poses, which need to be accessed from the respective robot-teaching or

handheld device.

6.3.1.2 Camera mounting

As illustrated in Fig. 6.16 and Fig. 6.18, two different use cases w.r.t. to the mounting of the camera

generally have to be considered:

a. The camera ismounted on the robot, i.e., it is mechanically fixed to a robot link (e.g., at its flange

or a flange-mounted tool), and hence moves with the robot.

Roboception GmbH

Manual: rc_cube

186 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

b. The camera is not mounted on the robot but is fixed to a table or other place in the robot’s vicinity

and remains at a static position w.r.t. the robot.

While the general Calibration routine (Section 6.3.1.3) is very similar in both use cases, the calibration
process’s output, i.e., the resulting calibration transform, will be semantically different, and the fixture

of the calibration grid will also differ.

Calibration with a robot-mounted camera When calibrating a robot-mounted camera with the

robot, the calibration grid has to be secured in a static position w.r.t. the robot, e.g., on a table or

some other fixed-base coordinate system as sketched in Fig. 6.16.

Warning: It is extremely important that the calibration grid does not move during step 2

of the Calibration routine (Section 6.3.1.3). Securely fixing its position to prevent unintended
movements such as those caused by vibrations, moving cables, or the like is therefore strongly

recommended.

The result of the calibration (step 3 of the Calibration routine, Section 6.3.1.3) is a pose Trobot
camera

describing the (previously unknown) relative positional and rotational transformation from thecamera frame into the user-selected robot frame such that
probot = Rrobot

camera
· pcamera + trobot

camera
, (6.3)

where probot = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the robot frame, pcamera is
the same point represented in the camera coordinate frame, andRrobot

camera
as well as trobot

camera
are the

corresponding 3× 3 rotation matrix and 3× 1 translation vector of the pose Trobot
camera

, respectively.

In practice, in the calibration result and in the provided robot poses, the rotation is defined by

Euler angles or as quaternion instead of a rotation matrix (see Pose formats, Section 12.1).

robot

ext

camera

T robot
ext

Tcamera
robot

calibration grid

Fig. 6.16: Important frames and transformations for calibrating a camera that is mounted on a general

robot. The camera is mounted with a fixed relative position to a user-defined robot frame (e.g., flange
or TCP). It is important that the pose Text

robot
of this robot frame w.r.t. a user-defined external reference

frame ext is observable during the calibration routine. The result of the calibration process is the de-
sired calibration transformationTrobot

camera
, i.e., the pose of the camera frame within the user-defined robot

frame.

Additional user input is required if the movement of the robot is constrained and the robot can

rotate the Tool Center Point (TCP) only around one axis. This is typically the case for robots with

four Degrees Of Freedom (4DOF) that are often used for palletizing tasks. In this case, the user

must specify which axis of the robot frame is the rotation axis of the TCP. Further, the signed offset
from the TCP to the camera coordinate system along the TCP rotation axis has to be provided. Fig.
6.17 illustrates the situation.

Roboception GmbH

Manual: rc_cube

187 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

For the rc_visard or rc_visard NG, the camera coordinate system is located in the optical center of
the left camera. The approximate location is given in section Coordinate Frames.

robot

ext

camera

T robot
ext Tcamera

robot

calibration grid

TCP rotation axis

TCP offset

Fig. 6.17: In case of a 4DOF robot, the TCP rotation axis and the offset from the TCP to the camera

coordinate system along the TCP rotation axis must be provided. In the illustrated case, this offset is

negative.

Calibration with a statically-mounted camera In use cases where the camera is positioned statically

w.r.t. the robot, the calibration grid needs to be mounted to the robot as shown for example in

Fig. 6.18 and Fig. 6.19.

Note: The hand-eye calibration module is completely agnostic about the exact mounting and

positioning of the calibration grid w.r.t. the user-defined robot frame. That means, the relative
positioning of the calibration grid to that frame neither needs to be known, nor it is relevant for

the calibration routine, as shown in Fig. 6.19.

Warning: It is extremely important that the calibration grid is attached securely to the robot

such that it does not change its relative position w.r.t. the user-defined robot frame during step
2 of the Calibration routine (Section 6.3.1.3).

In this use case, the result of the calibration (step 3 of the Calibration routine, Section 6.3.1.3) is the
poseText

camera
describing the (previously unknown) relative positional and rotational transformation

between the camera frame and the user-selected external reference frame ext such that
pext = Rext

camera
· pcamera + text

camera
, (6.4)

where pext = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the external reference frameext, pcamera is the same point represented in the camera coordinate frame, and Rext
camera

as well as

text
camera

are the corresponding 3×3 rotation matrix and 3×1 translation vector of the poseText
camera

,

respectively. In practice, in the calibration result and in the provided robot poses, the rotation is

defined by Euler angles or as quaternion instead of a rotation matrix (see Pose formats, Section
12.1).

Roboception GmbH

Manual: rc_cube

188 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://doc.rc-visard.com/latest/en/hardware_spec.html#coordinate-frames

6.3. Configuration modules

robot

ext

camera

T robot
ext Tcamera

ext

calibration

grid

Fig. 6.18: Important frames and transformations for calibrating a statically mounted camera: The latter

is mounted with a fixed position relative to a user-defined external reference frame ext (e.g., the world
coordinate frame or the robot’s mounting point). It is important that the poseText

robot
of the user-definedrobot frame w.r.t. this frame is observable during the calibration routine. The result of the calibration

process is the desired calibration transformation Text
camera

, i.e., the pose of the camera frame in the user-
defined external reference frame ext.

robot

camera

robot

camera

Fig. 6.19: Alternate mounting options for attaching the calibration grid to the robot

Additional user input is required if the movement of the robot is constrained and the robot can

rotate the Tool Center Point (TCP) only around one axis. This is typically the case for robots with

four Degrees Of Freedom (4DOF) that are often used for palletizing tasks. In this case, the user

must specify which axis of the robot frame is the rotation axis of the TCP. Further, the signed offset
from the TCP to the visible surface of the calibration grid along the TCP rotation axis has to be

provided. The grid must be mounted such that the TCP rotation axis is orthogonal to the grid. Fig.

6.20 illustrates the situation.

Roboception GmbH

Manual: rc_cube

189 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

ext

camera

T robot
ext

Tcamera
ext

calibration
grid

robot

TCP rotation axis

TCP offset

Fig. 6.20: In case of a 4DOF robot, the TCP rotation axis and the offset from the TCP to the visible surface

of the grid along the TCP rotation axis must be provided. In the illustrated case, this offset is negative.

6.3.1.3 Calibration routine

The hand-eye calibration can be performed manually using the Web GUI (Section 7.1) or programmati-
cally via the REST-API interface (Section 7.3). The general calibration routine will be described by following
the steps of the hand-eye calibration wizard provided on the Web GUI. This wizard can be found in therc_cube’s Web GUI in the desired pipeline under Configuration→ Hand-Eye Calibration. References to the
corresponding REST-API calls are provided at the appropriate places.

Step 1: Hand-Eye Calibration Status

The starting page of the hand-eye calibration wizard shows the current status of the hand-eye calibra-

tion. If a hand-eye calibration is saved on the rc_cube, the calibration transformation is displayed here
(see Fig. 6.21).

Roboception GmbH

Manual: rc_cube

190 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Fig. 6.21: Current status of the hand-eye calibration in case a hand-eye calibration is saved

To query the hand-eye calibration status programmatically, the module’s REST-API offers the

get_calibration service call (see Services, Section 6.3.1.5). An existing hand-eye calibration can be
removed by pressing Remove Calibration or using remove_calibration in the REST-API (see Services, Sec-
tion 6.3.1.5).

To start a new hand-eye calibration, click on Perform Hand-Eye Calibration or Next.
Step 2: Checking Grid Detection

To achieve good calibration results, the images should be well exposed so that the calibration grid can

be detected accurately and reliably. In this step, the grid detection can be checked and the camera set-

tings can be adjusted if necessary. In case parts of the calibration grid are overexposed, the respective

squares of the calibration grid will be highlighted in red. A successful grid detection is visualized by

green check marks on every square of the calibration grid and a thick green border around the grid as

shown in Fig. 6.22. However, to allow for more robust automatic hand-eye calibration, the grid detection

will also be successful, if up to three squares of the calibration grid cannot be detected.

Roboception GmbH

Manual: rc_cube

191 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Fig. 6.22: Checking the calibration grid detection

Step 3: Record Poses

In this step, the user records images of the calibration grid at several different robot poses. These poses

must each ensure that the calibration grid is completely visible in the left camera image or at most three

squares are missing. Furthermore, the robot poses need to be selected properly to achieve a variety

of different perspectives for the camera to perceive the calibration grid. Fig. 6.23 shows a schematic

recommendation of four different grid positions which should be recorded from a close and a far point

of view, resulting in eight images for the calibration.

Roboception GmbH

Manual: rc_cube

192 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Fig. 6.23: Recommended views on the calibration grid during the calibration procedure. In case of a

4DOF robot, other views have to be chosen, which should be as different as possible.

Warning: Calibration quality, i.e., the accuracy of the calculated calibration result, depends on the

calibration-grid views provided. The more diverse the perspectives are, the better is the calibration.

Choosing very similar views, i.e., varying the robot pose only slightly before recording a new calibra-

tion pose, may lead to inaccurate estimation of the desired calibration transformation.

After the robot reaches each calibration pose, the corresponding pose Text
robot

of the user-defined robot
frame in the user-defined external reference frame ext needs to be reported to the hand-eye calibra-
tion module. For this purpose, the module offers different slots to store the reported poses and the
corresponding left camera images. All filled slots will then be used to calculate the desired calibration

transformation between the camera frame and either the user-defined robot frame (robot-mounted
camera) or the user-defined external reference frame ext (static camera).
In the Web GUI, the user can choose between many different pose formats for providing the calibration

poses (see Pose formats, Section 12.1). When calibrating using the REST-API, the poses are always given
in XYZ+quaternion. The Web GUI offers eight slots (Close View 1, Close View 2, etc.) for the user to fill
manually with robot poses. Next to each slot, a figure suggests a respective dedicated viewpoint on the

grid. For each slot, the robot should be operated to achieve the suggested view.

Roboception GmbH

Manual: rc_cube

193 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Fig. 6.24: Filling the first slot in the hand-eye calibration process for a statically mounted camera

To record a calibration pose, click on Set Pose for the respective slot and enter the robot frame’s pose
into the respective text fields. The pose is then stored with the corresponding camera image by clicking

the Take Picture to Proceed button. This will save the calibration pose in the respective slot.
To transmit the poses programmatically, the module’s REST-API offers the set_pose service call (seeServices, Section 6.3.1.5).
Note: The user’s acquisition of robot pose data depends on the robot model and manufacturer – it

might be read from a teaching or handheld device, which is shipped with the robot.

Warning: Please be careful to correctly and accurately enter the values; even small variations or

typos may lead to calibration-process failure.

The Web GUI displays the currently saved poses (only with slot numbers from 0 to 7) with their camera

Roboception GmbH

Manual: rc_cube

194 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

images and also allows to delete them by clicking Delete Pose to remove a single pose, or clicking Clear allPoses to remove all poses. In the REST-API the currently stored poses can be retrieved via get_poses and
removed via delete_poses for single poses or reset_calibration for removing all poses (see Services,
Section 6.3.1.5).

When at least four poses are set, the user can continue to the computation of the calibration result by

pressing Next.
Note: To successfully calculate the hand-eye calibration transformation, at least four different robot

calibration poses need to be reported and stored in slots. However, to prevent errors induced by

possible inaccurate measurements, at least eight calibration poses are recommended.

Step 4: Compute Calibration

Before computing the calibration result, the user has to provide the correct calibration parameters.

These include the exact calibration grid dimensions and the sensor mounting type. The Web GUI also

offers settings for calibrating 4DOF robots. In this case, the rotation axis, as well as the offset from

the TCP to the camera coordinate system (robot-mounted camera) or grid surface (statically mounted

camera) must be given. For the REST-API, the respective parameters are listed in Parameters (Section
6.3.1.4).

Fig. 6.25: Defining hand-eye calibration parameters and computing the calibration result via the rc_cube’s
Web GUI

Roboception GmbH

Manual: rc_cube

195 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

When the parameters are correct, the desired calibration transformation can be computed from the col-

lected poses and camera images by clicking Compute Calibration. The REST-API offers this functionality
via the calibrate service call (see Services, Section 6.3.1.5).
Depending on the way the camera is mounted, the calibration result contains the transformation (i.e.,

the pose) between the camera frame and either the user-defined robot frame (robot-mounted cam-
era) or the user-defined external reference frame ext (statically mounted camera); see Camera mount-ing (Section 6.3.1.2).
To enable users to judge the quality of the resulting calibration transformation, the translational and ro-

tational calibration errors are reported, which are computed from the variance of the calibration result.

If the calibration error is not acceptable, the user can change the calibration parameters and recompute

the result, or return to step 3 of the calibration procedure and add more poses or update poses.

To save the calibration result, press Save Calibration or use the REST-API save_calibration service call
(see Services, Section 6.3.1.5).
6.3.1.4 Parameters

The hand-eye calibration module is called rc_hand_eye_calibration in the REST-API and is represented
in theWeb GUI (Section 7.1) in the desired pipeline under Configuration→ Hand-Eye Calibration. The user
can change the calibration parameters there or use the REST-API interface (Section 7.3).
Parameter overview

This module offers the following run-time parameters:

Table 6.35: The rc_hand_eye_calibration module’s run-time pa-
rameters

Name Type Min Max Default Description

grid_height float64 0.0 10.0 0.0 The height of the calibration pattern in

meters

grid_width float64 0.0 10.0 0.0 The width of the calibration pattern in

meters

robot_mounted bool false true true Whether the camera is mounted on the

robot

tcp_offset float64 -10.0 10.0 0.0 Offset from TCP along tcp_rotation_axis

tcp_rotation_axis int32 -1 2 -1 -1 for off, 0 for x, 1 for y, 2 for z

Description of run-time parameters

The parameter descriptions are given with the corresponding Web GUI names in brackets.

grid_width (Width)

Width of the calibration grid in meters. The width should be given with a very high accuracy,

preferably with sub-millimeter accuracy.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓grid_width=<value>

API version 1 (deprecated)

Roboception GmbH

Manual: rc_cube

196 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_width=<value>

grid_height (Height)

Height of the calibration grid inmeters. The height should be given with a very high accuracy,

preferably with sub-millimeter accuracy.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓grid_height=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_height=<value>

robot_mounted (Sensor Mounting)

If set to true, the camera is mounted on the robot. If set to false, the camera is mounted
statically and the calibration grid is mounted on the robot.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓robot_mounted=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?robot_mounted=<value>

tcp_offset (TCP Offset)

The signed offset from the TCP to the camera coordinate system (robot-mounted sensor) or

the visible surface of the calibration grid (statically mounted sensor) along the TCP rotation

axis in meters. This is required if the robot’s movement is constrained and it can rotate its

TCP only around one axis (e.g., 4DOF robot).

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓tcp_offset=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_offset=<value>

tcp_rotation_axis (TCP Rotation Axis)

The axis of the robot frame around which the robot can rotate its TCP. 0 is used for X, 1 for Y
and 2 for the Z axis. This is required if the robot’s movement is constrained and it can rotate

Roboception GmbH

Manual: rc_cube

197 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

its TCP only around one axis (e.g., 4DOF robot). -1 means that the robot can rotate its TCP

around two independent rotation axes. tcp_offset is ignored in this case.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓tcp_rotation_axis=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_rotation_axis=
→˓<value>

6.3.1.5 Services

The REST-API service calls offered to programmatically conduct the hand-eye calibration and to restore

this module’s parameters are explained below.

get_calibration

returns the hand-eye calibration currently stored on the rc_cube.
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓get_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_calibration

Request

This service has no arguments.

Response

The field error gives the calibration error in pixels which is computed from the transla-
tional error translation_error_meter and the rotational error rotation_error_degree.
This value is only given for compatibility with older versions. The translational and rotational

errors should be preferred.

Table 6.36: Return codes of the get_calibration service call

status success Description

0 true returned valid calibration pose

2 false calibration result is not available

The definition for the response with corresponding datatypes is:

{
"name": "get_calibration",
"response": {
"error": "float64",
"message": "string",

(continues on next page)

Roboception GmbH

Manual: rc_cube

198 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

(continued from previous page)

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"translation_error_meter": "float64"

}
}

remove_calibration

removes the persistent hand-eye calibration on the rc_cube. After this call the

get_calibration service reports again that no hand-eye calibration is available. This ser-
vice call will also delete all the stored calibration poses and corresponding camera images in

the slots.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓remove_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/remove_calibration

Request

This service has no arguments.

Response

Table 6.37: Return codes of the get_calibration service call

status success Description

0 true removed persistent calibration, device reports as uncalibrated

1 true no persistent calibration found, device reports as uncalibrated

2 false could not remove persistent calibration

The definition for the response with corresponding datatypes is:

{
"name": "remove_calibration",
"response": {
"message": "string",

(continues on next page)

Roboception GmbH

Manual: rc_cube

199 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

(continued from previous page)

"status": "int32",
"success": "bool"

}
}

set_pose

allows to provide a robot pose as calibration pose to the hand-eye calibration routine and

records the current image of the calibration grid.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓set_pose

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_pose

Request

The slot argument is used to assign unique numbers to the different calibration poses. The
range for slot is from 0 to 15. At each instant when set_pose is called, an image is recorded.
This service call fails if the grid was undetectable in the current image.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "uint32"

}
}

Response

Roboception GmbH

Manual: rc_cube

200 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Table 6.38: Return codes of the set_pose service call

status success Description

1 true pose stored successfully

3 true pose stored successfully; collected enough poses for calibration,

i.e., ready to calibrate

4 false calibration grid was not detected, e.g., not fully visible in camera

image

8 false no image data available

12 false given orientation values are invalid

13 false invalid slot number

The field overexposed indicates if parts of the calibration grid were overexposed in this im-
age.

The definition for the response with corresponding datatypes is:

{
"name": "set_pose",
"response": {
"message": "string",
"overexposed": "bool",
"status": "int32",
"success": "bool"

}
}

get_poses

returns the robot poses that are currently stored for the hand-eye calibration routine.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓get_poses

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_poses

Request

This service has no arguments.

Response

Table 6.39: Return codes of the get_poses service call

status success Description

0 true stored poses are returned

1 true no calibration pose available

The field overexposed indicates if parts of the calibration grid were overexposed in this im-
age.

The definition for the response with corresponding datatypes is:

Roboception GmbH

Manual: rc_cube

201 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

{
"name": "get_poses",
"response": {
"message": "string",
"poses": [

{
"overexposed": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "uint32"

}
],
"status": "int32",
"success": "bool"

}
}

delete_poses

deletes the calibration poses and corresponding images with the specified slots.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓delete_poses

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/delete_poses

Request

The slots argument specifies which calibration poses should be deleted. If no slots are

provided, nothing will be deleted.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"slots": [
"uint32"

]
}

}

Response

Roboception GmbH

Manual: rc_cube

202 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Table 6.40: Return codes of the delete_poses service call

status success Description

0 true poses successfully deleted

1 true no slots given

The definition for the response with corresponding datatypes is:

{
"name": "delete_poses",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

reset_calibration

deletes all previously provided poses and corresponding images. The last saved calibration

result is reloaded. This service might be used to (re-)start the hand-eye calibration from

scratch.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓reset_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_calibration

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_calibration",
"response": {

"message": "string",
"status": "int32",
"success": "bool"

}
}

calibrate

calculates and returns the hand-eye calibration transformation with the robot poses config-

ured by the set_pose service.

Details

Roboception GmbH

Manual: rc_cube

203 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

save_calibration must be called to make the calibration available for other modules via
the get_calibration service call and to store it persistently.

Note: For calculating the hand-eye calibration transformation at least four robot cali-

bration poses are required (see set_pose service). However, eight calibration poses are
recommended.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓calibrate

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/calibrate

Request

This service has no arguments.

Response

The field error gives the calibration error in pixels which is computed from the transla-
tional error translation_error_meter and the rotational error rotation_error_degree.
This value is only given for compatibility with older versions. The translational and rotational

errors should be preferred.

Table 6.41: Return codes of the calibrate service call

status success Description

0 true calibration successful, returned calibration result

1 false not enough poses to perform calibration

2 false calibration result is invalid, please verify the input data

3 false given calibration grid dimensions are not valid

4 false insufficient rotation, tcp_offset and tcp_rotation_axismust be
specified

5 false sufficient rotation available, tcp_rotation_axismust be set to -1

6 false poses are not distinct enough from each other

The definition for the response with corresponding datatypes is:

{
"name": "calibrate",
"response": {

"error": "float64",
"message": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",

(continues on next page)

Roboception GmbH

Manual: rc_cube

204 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

(continued from previous page)

"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"translation_error_meter": "float64"

}
}

save_calibration

persistently saves the result of hand-eye calibration to the rc_cube and overwrites the exist-
ing one. The stored result can be retrieved any time by the get_calibration service. This
service call will also delete all the stored calibration poses and corresponding camera images

in the slots.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓save_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/save_calibration

Request

This service has no arguments.

Response

Table 6.42: Return codes of the save_calibration service call

status success Description

0 true calibration saved successfully

1 false could not save calibration file

2 false calibration result is not available

The definition for the response with corresponding datatypes is:

{
"name": "save_calibration",
"response": {

"message": "string",
"status": "int32",
"success": "bool"

}
}

set_calibration

sets the hand-eye calibration transformation with arguments of this call.

Details

The calibration transformation is expected in the same format as returned by the calibrate
and get_calibration calls. The given calibration information is also stored persistently on
the sensor by internally calling save_calibration.

Roboception GmbH

Manual: rc_cube

205 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓set_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_calibration

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool"

}
}

Response

Table 6.43: Return codes of the set_calibration service call

status success Description

0 true setting the calibration transformation was successful

12 false given orientation values are invalid

The definition for the response with corresponding datatypes is:

{
"name": "set_calibration",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

reset_defaults

restores and applies the default values for this module’s parameters (“factory reset”). Does

not affect the calibration result itself or any of the slots saved during calibration. Only
parameters such as the grid dimensions and the mount type will be reset.

Details

This service can be called as follows.

Roboception GmbH

Manual: rc_cube

206 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.2 CollisionCheck

6.3.2.1 Introduction

The CollisionCheck module is an optional on-board module of the rc_cube and is licensed with any of the
modules ItemPick and BoxPick (Section 6.2.3) or CADMatch (Section 6.2.5) and SilhouetteMatch (Section
6.2.4). Otherwise it requires a separate CollisionCheck license (Section 9.5) to be purchased.
The module provides an easy way to check if a gripper is in collision with a load carrier, the point

cloud (ony in combination with CADMatch), or other detected objects (only in combination with CAD-Match (Section 6.2.5) and SilhouetteMatch (Section 6.2.4)). It is integrated with the ItemPick and Box-Pick (Section 6.2.3) and CADMatch (Section 6.2.5) and SilhouetteMatch (Section 6.2.4) modules, but can
be used as standalone product. The models of the grippers for collision checking have to be defined in

the GripperDB (Section 6.4.3) module.

Warning: Collisions are checked only between the load carrier and the gripper, not the robot it-

self, the flange, other objects or the item located in the robot gripper. Only in combination withCADMatch (Section 6.2.5) and SilhouetteMatch (Section 6.2.4), and only in case the selected template
contains a collision geometry and check_collisions_with_matches is enabled in the respective de-
tection module, also collisions between the gripper and other detected objects are checked. Colli-
sions with objects that cannot be detected will not be checked.

Only in combination with CADMatch, Section 6.2.5 and only if check_collisions_with_point_cloud
is enabled in CADMatch, collisions between the gripper and a watertight version of the point cloud

are checked.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-

tive camera pipeline and have no influence on other pipelines running on the rc_cube.

Roboception GmbH

Manual: rc_cube

207 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Table 6.44: Specifications of the CollisionCheck module

Collision checking with detected load carrier, detected objects (only CADMatch (Section
6.2.5) and SilhouetteMatch (Section 6.2.4)), baseplane (onlySilhouetteMatch, Section 6.2.4), point cloud (only CADMatch, Section
6.2.5)

Collision checking available in ItemPick and BoxPick (Section 6.2.3), CADMatch (Section 6.2.5) andSilhouetteMatch (Section 6.2.4)

6.3.2.2 Collision checking

Stand-alone collision checking

The check_collisions service call triggers collision checking between the chosen gripper and the pro-
vided load carriers for each of the provided grasps. Checking collisions with other objects or the point

cloud is not possible with the stand-alone check_collisions service. The CollisionCheckmodule checks
if the chosen gripper is in collision with at least one of the load carriers, when the TCP of the gripper is

positioned in the grasp position. It is possible to check the collision with multiple load carriers simul-

taneously. The grasps which are in collision with any of the defined load carriers will be returned as

colliding.

The pre_grasp_offset can be used for additional collision checking. The pre-grasp offset 𝑃𝑜𝑓𝑓 is the

offset between the grasp point 𝑃𝑔𝑟𝑎𝑠𝑝 and the pre-grasp position 𝑃𝑝𝑟𝑒 in the grasp’s coordinate frame

(see Fig. 6.26). If the pre-grasp offset is defined, the grasp will be detected as colliding if the gripper is in

collision at any point during motion from the pre-grasp position to the grasp position (assuming a linear

movement).

y

z

x

Ppre

Pgrasp
y

z
x

Poff=Pgrasp-Ppre

Fig. 6.26: Illustration of the pre-grasp offset parameter for collision checking. In this case, the pre-grasp

position as well as the grasp position are collision free. However, the trajectory between these poses

would have collisions. Thus, this grasp pose would be marked as colliding.

Collision checking within other modules

Collision checking is integrated in the following modules’ services:

• ItemPick and BoxPick (Section 6.2.3): compute_grasps (see compute_grasps for ItemPick, Section
6.2.3.7 and compute_grasps for BoxPick, Section 6.2.3.7)

• SilhouetteMatch (Section 6.2.4): detect_object (see detect_object, Section 6.2.4.11)
• CADMatch (Section 6.2.5): detect_object (see detect_object, Section 6.2.5.10)

Each of these services can take a collision_detection argument consisting of the gripper_id of the
gripper and optionally the pre_grasp_offset as described in the previous section Stand-alone collisionchecking (Section 6.3.2.2). When the collision_detection argument is given, these services only return
Roboception GmbH

Manual: rc_cube

208 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

the grasps at which the gripper is not in collision with the load carrier detected by these services. For

this, a load carrier ID has to be provided to these services as well.

Only for CADMatch (Section 6.2.5) and SilhouetteMatch (Section 6.2.4), and only in case the selected tem-
plate contains a collision geometry and check_collisions_with_matches is enabled in the respective
detection module, grasp points at which the gripper would be in collision with other detected objects
are also rejected. The object on which the grasp point to be checked is located, is excluded from the

collision check.

When a gripper is defined for a grasp point in the object template for CADMatch (Section 6.2.5) and Sil-houetteMatch (Section 6.2.4), then this gripper will be used for collision checking at that specific grasp
point instead of the gripper defined in the collision_detection argument of the detect_object ser-
vice (see Setting of grasp points, Section 6.2.4.4). The grasps returned by the detect_object service
contain a flag collision_checked, indicating whether the grasp was checked for collisions, and the field
gripper_id. If collision_checked is true, the returned gripper_id contains the ID of the gripper that
was used for the collision check. That is the ID of the gripper defined for that specific grasp, or, if empty,

the gripper that was given in the collision_detection argument of the request. If collision_checked
is false, the returned gripper_id is the gripper ID that was defined for that grasp.

In SilhouetteMatch, Section 6.2.4, collisions between the gripper and the base plane can be checked, if
check_collisions_with_base_plane is enabled in SilhouetteMatch.

Collisions between the gripper and a watertight version of the point cloud can be checked in combina-

tion with CADMatch, Section 6.2.5, if check_collisions_with_point_cloud is enabled in CADMatch.

Warning: Collisions are checked only between the load carrier and the gripper, not the robot it-

self, the flange, other objects or the item located in the robot gripper. Only in combination withCADMatch (Section 6.2.5) and SilhouetteMatch (Section 6.2.4), and only in case the selected template
contains a collision geometry and check_collisions_with_matches is enabled in the respective de-
tection module, also collisions between the gripper and other detected objects are checked. Colli-
sions with objects that cannot be detected will not be checked.

Only in combination with CADMatch, Section 6.2.5 and only if check_collisions_with_point_cloud
is enabled in CADMatch, collisions between the gripper and a watertight version of the point cloud

are checked.

The collision-check results are affected by run-time parameters, which are listed and explained further

below.

6.3.2.3 Parameters

The CollisionCheck module is called rc_collision_check in the REST-API and is represented in theWebGUI (Section 7.1) in the desired pipeline under Configuration→ CollisionCheck. The user can explore and
configure the rc_collision_check module’s run-time parameters, e.g. for development and testing,
using the Web GUI or the REST-API interface (Section 7.3).
Parameter overview

This module offers the following run-time parameters:

Roboception GmbH

Manual: rc_cube

209 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Table 6.45: The rc_collision_check module’s run-time parame-
ters

Name Type Min Max Default Description

check_bottom bool false true true Whether to enable collision checking

with the bottom of the load carrier

check_flange bool false true true Whether all grasps with the flange

inside the load carrier should be

marked as colliding

collision_dist float64 0.0 0.1 0.01 Minimum distance in meters between

any element of the gripper and the

load carrier or the base plane (only

SilhouetteMatch) for a collision-free

grasp

Description of run-time parameters

Each run-time parameter is represented by a row in theWeb GUI’s Settings section in the desired pipeline
under Configuration→ CollisionCheck. The name in the Web GUI is given in brackets behind the param-
eter name:

collision_dist (Collision Distance)

Minimal distance in meters between any part of the gripper and the load carrier and/or the

base plane (only SilhouetteMatch) for a grasp to be considered collision free.

Note: The collision distance is not applied when checking collisions between the gripper

and the point cloud, or the gripper and other detected objects. It is not applied when

checking if the flange is inside the load carrier (check_flange), either.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?
→˓collision_dist=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?collision_dist=<value>

check_flange (Check Flange)

Performs an additional safety check as described in Robot flange radius (Section 6.4.3.2). If
this parameter is set, all grasps in which any part of the robot’s flange is inside the load

carrier are marked as colliding.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?check_

→˓flange=<value>

API version 1 (deprecated)

Roboception GmbH

Manual: rc_cube

210 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_flange=<value>

check_bottom (Check Bottom)

When this check is enabled the collisions will be checked not only with the side walls of the

load carrier but also with its bottom. It might be necessary to disable this check if the TCP is

inside the collision geometry (e.g. is defined inside a suction cup).

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?check_

→˓bottom=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_bottom=<value>

6.3.2.4 Status values

The rc_collision_checkmodule reports the following status values:

Table 6.46: The rc_collision_checkmodule status values

Name Description

last_evaluated_grasps Number of evaluated grasps

last_collision_free_grasps Number of collision-free grasps

collision_check_time Collision checking runtime

6.3.2.5 Services

The user can explore and call the rc_collision_check module’s services, e.g. for development and
testing, using REST-API interface (Section 7.3) or the rc_cube Web GUI (Section 7.1).
The CollisionCheck module offers the following services.

reset_defaults

Resets all parameters of the module to its default values, as listed in above table.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/services/reset_

→˓defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/services/reset_defaults

Request

This service has no arguments.

Response

Roboception GmbH

Manual: rc_cube

211 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

check_collisions (deprecated)

Triggers a collision check between a gripper and a load carrier.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/services/check_

→˓collisions

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/services/check_collisions

Request

Required arguments:

grasps: list of grasps that should be checked.

load_carriers: list of load carriers against which the collision should be checked.
The fields of the load carrier definition are described in Detection of load carri-ers (Section 6.2.1.2). The position frame of the grasps and load carriers has to be
the same.

gripper_id: the id of the gripper that is used to check the collisions. The gripper
has to be configured beforehand.

Optional arguments:

pre_grasp_offset: the offset in meters from the grasp position to the pre-grasp
position in the grasp frame. If this argument is set, the collisions will not only be

checked in the grasp point, but also on the path from the pre-grasp position to the

grasp position (assuming a linear movement).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

212 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"gripper_id": "string",
"load_carriers": [
{

"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

Response

colliding_grasps: list of grasps in collision with one or more load carriers.

collision_free_grasps: list of collision-free grasps.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "check_collisions",

(continues on next page)

Roboception GmbH

Manual: rc_cube

213 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

(continued from previous page)

"response": {
"colliding_grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"collision_free_grasps": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_gripper (deprecated)

Persistently stores a gripper on the rc_cube.
API version 2

This service is not available in API version 2. Use set_gripper (Section 6.4.3.3) in
rc_gripper_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/set_gripper

Roboception GmbH

Manual: rc_cube

214 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

The definitions of the request and response are the same as described in set_gripper (Section
6.4.3.3) in rc_gripper_db.

get_grippers (deprecated)

Returns the configured grippers with the requested gripper_ids.

API version 2

This service is not available in API version 2. Use get_grippers (Section 6.4.3.3) in
rc_gripper_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/get_grippers

The definitions of the request and response are the same as described inget_grippers (Section 6.4.3.3) in rc_gripper_db.
delete_grippers (deprecated)

Deletes the configured grippers with the requested gripper_ids.

API version 2

This service is not available in API version 2. Use delete_grippers (Section 6.4.3.3) in
rc_gripper_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/delete_grippers

The definitions of the request and response are the same as described indelete_grippers (Section 6.4.3.3) in rc_gripper_db.
6.3.2.6 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Table 6.47: Return codes of the CollisionCheck services

Code Description

0 Success

-1 An invalid argument was provided

-7 Data could not be read or written to persistent storage

-9 No valid license for the module

-10 New gripper could not be added as the maximum storage capacity of grippers has been

exceeded

10 The maximum storage capacity of grippers has been reached

11 Existing gripper was overwritten

Roboception GmbH

Manual: rc_cube

215 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

6.3.3 Camera calibration

The camera calibration module is a base module which is available on every rc_cube, but cannot be used
in camera pipelines of type rc_visard.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-

tive camera pipeline and have no influence on other pipelines running on the rc_cube.
To use the camera as measuring instrument, camera parameters such as focal length, lens distortion,

and the relationship of the cameras to each other must be exactly known. The parameters are de-

termined by calibration and used for image rectification (see Rectification, Section 6.1.1.1), which is the
basis for all other image processing modules.

The camera calibration module is responsible for checking calibration and calibrating.

6.3.3.1 Calibration process

Manual calibration can be done through the Web GUI (Section 7.1) in the desired pipeline under Con-figuration→ Camera Calibration. This page provides a wizard to guide the user through the calibration
process.

During calibration, the calibration gridmust be detected in different poses. When holding the calibration

grid, make sure that all black squares of the grid are completely visible and not occluded in both camera

images. A green check mark overlays each correctly detected square. The correct detection of the grid is

only possible if all of the black squares are detected. Some of the squares not being detected, or being

detected only briefly might indicate bad lighting conditions, or a damaged grid. Squares in overexposed

parts of the calibration grid are highlighted in red. In this case, the lighting conditions or exposure

setting must be adjusted. A thick green border around the calibration grid indicates that it was detected

correctly in both camera images.

Calibration settings

The quality of camera calibration heavily depends on the quality of the calibration grid. Calibration grids

can be obtained from Roboception.

Roboception GmbH

Manual: rc_cube

216 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Fig. 6.27: Calibration settings

In the first step, the calibration grid must be specified. The Next button proceeds to the next step.
Adjust focus

In this step, the focus of the cameras can be adjusted. For this, the grid must be held such that it is

simultaneously visible in both cameras. After the grid is detected, the green bars at the right image

borders indicate the blur of the image. Adjust the focus of each camera so that the bar in each image is

minimal.

Note: While calibrating an rc_viscore, the camera exposure settings are temporarily changed to values
that allow for easier calibration. The exposure settings can still be changed and will be reset when

the calibration is done or cancelled.

For calibrating the Basler blaze sensor, the color camera should be focussed to close distance so that
the calibration grid can be detected when it almost fills the image. The camera can be refocussed to

working distance after calibration if necessary.

Furthermore, the exposure time of the blaze Time-of-Flight camera should be reduced to a minimum.

Otherwise, the calibration grid cannot be detected due to over exposure.

Roboception GmbH

Manual: rc_cube

217 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Fig. 6.28: Adjust the focus of each camera

Verify calibration

In the next step, the current calibration can be verified. To perform the verification, the grid must be

held such that it is simultaneously visible in both cameras. When the grid is detected, the calibration

error is automatically computed and the result is displayed on the screen.

Roboception GmbH

Manual: rc_cube

218 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Fig. 6.29: Verification of calibration

Note: To compute a meaningful calibration error, the grid should be held as close as possible to

the cameras. If the grid only covers a small section of the camera images, the calibration error will

always be less than when the grid covers the full image. For this reason, the minimal and maximal

calibration error during verification are shown in addition to the calibration error at the current grid

position.

The typical calibration error is below 0.2 pixels. If the error is in this range, then the calibration procedure

can be skipped. If the calibration error is greater, the calibration procedure should be performed to

guarantee full sensor performance. The button Next starts the procedure.

Warning: A large error during verification can be due to miscalibrated cameras, an inaccurate

calibration grid, or wrong grid width or height. In case you use a custom calibration grid, please

make sure that the grid is accurate and the entered grid width and height are correct. Otherwise,

manual calibration will actually decalibrate the cameras!

Roboception GmbH

Manual: rc_cube

219 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Calibrate

The camera’s exposure time should be set appropriately before starting the calibration. To achieve

good calibration results, the images should be well-exposed and motion blur should be avoided. Thus,

the maximum auto-exposure time should be as short as possible, but still allow a good exposure. The

current exposure time is displayed below the camera images as shown in Fig. 6.31.

Full calibration consists of calibrating each camera individually (monocalibration) and then performing

a stereo calibration to determine the relationship between them. In most cases, the intrinsic calibration

of each camera does not get corrupted. For this reason, monocalibration is skipped by default during a

recalibration, but can be performed by clicking Perform Monocalibration in the Calibrate tab. This should
only be done if the result of the stereo calibration is not satisfactory.

When a Basler blaze sensor is connected to the rc_cube for the first time, it is uncalibrated and needs
to be fully calibrated. In this case, monocalibration is offered automatically and cannot be skipped to

ensure a complete calibration of the sensor. After saving the calibration, it will persistently reside on

the rc_cube and automatically be used whenever the blaze sensor is connected to the rc_cube again,
regardless of the port or pipeline.

Stereo calibration

During stereo calibration, both cameras are calibrated to each other to find their relative rotation and

translation.

The camera images can also be displayed mirrored to simplify the correct positioning of the calibration

grid.

First, the grid should be held as close as possible to the camera and very still. It must be fully visible in

both images and the cameras should look perpendicularly onto the grid. If the grid is not perpendicular

to the line of sight of the cameras, this will be indicated by small green arrows pointing to the expected

positions of the grid corners (see Fig. 6.30).

Fig. 6.30: Arrows indicating that the grid is not perpendicular to the camera’s line of sight during stereo

calibration

The grid must be kept very still for detection. If motion blur occurs, the grid will not be detected. All

grid cells that are drawn onto the image have to be covered by the calibration grid. This is visualized by

filling the covered cells in green (see Fig. 6.31).

Depending on the camera, the grid has to be held at different positions until all grid cells have been

covered and filled in green.

Roboception GmbH

Manual: rc_cube

220 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Fig. 6.31: Stereo calibration: Hold the grid as close as possible to fill all visualized cells

Note: If the check marks on the calibration grid all vanish, then either the camera does not look

perpendicularly onto the grid, or the grid is too far away from the camera.

Once all grid cells are covered, they disappear and a single far cell is visualized. Now, the grid should be

held as far as possible from the cameras, so that the small cell is covered. Arrows will indicate if the grid

is still too close to the camera. When the grid is successfully detected at the far pose, the cell is filled in

green and the result can be computed (see Fig. 6.32).

Roboception GmbH

Manual: rc_cube

221 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

Fig. 6.32: Holding the grid far away during stereo calibration

If stereo calibration yields an unsatisfactory calibration error, then calibration should be repeated with

monocalibration (see next Section Monocalibration).
Monocalibration

Monocalibration is the intrinsic calibration of each camera individually. Since the intrinsic calibration

normally does not get corrupted, the monocalibration should only be performed if the result of stereo

calibration is not satisfactory.

Click Perform Monocalibration in the Calibrate tab to start monocalibration.
For monocalibration, the grid has to be held in certain poses. The arrows from the grid corners to the

green areas indicate that all grid corners should be placed inside the green areas. The green areas are

called sensitive areas. The Size of Sensitive Area slider can control their size to ease calibration. However,
please be aware that increasing their size too much may result in slightly lower calibration accuracy.

Holding the grid upside down is a commonmistake made during calibration. Spotting this in this case is

easy because the green lines from the grid corners into the green areas will cross each other as shown

in Fig. 6.33.

Fig. 6.33: Wrongly holding the grid upside down leads to crossed green lines.

Note: Calibration might appear cumbersome as it involves holding the grid in certain predefined

poses. However, these poses are required to ensure an unbiased, high-quality calibration result.

Roboception GmbH

Manual: rc_cube

222 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

The monocalibration process involves five poses for each camera as shown in Fig. 6.34.

Fig. 6.34: Poses required for monocamera calibration

After the corners or sides of the grid are placed on top of the sensitive areas, the process automatically

shows the next pose required. When the process is finished for the left camera, the same procedure is

repeated for the right one.

Continue with the guidelines given in the previous Section Stereo calibration.
Storing the calibration result

Clicking the Compute Calibration button finishes the process and displays the final result. The indicated
result is the mean reprojection error of all calibration points. It is given in pixels and typically has a value

below 0.2.

Pressing Save Calibration applies the calibration and saves it to the device.
Note: The given result is the minimum error left after calibration. The real error is definitely not

less than this, but could in theory be larger. This is true for every camera-calibration algorithm and

the reason why we enforce holding the grid in very specific poses. Doing so ensures that the real

calibration error cannot significantly exceed the reported error.

Warning: If a hand-eye calibration was stored on the rc_cube before camera calibration, the hand-
eye calibration values could have become invalid. Please repeat the hand-eye calibration procedure.

6.3.3.2 Parameters

The module is called rc_stereocalib in the REST-API.

Note: The camera calibration module’s available parameters and status values are for internal use

only and may change in the future without further notice. Calibration should only be performed

through the Web GUI as described above.

6.3.3.3 Services

Note: The camera calibration module’s available service calls are for internal use only and may

change in the future without further notice. Calibration should only be performed through the Web

GUI as described above.

6.3.4 IO and Projector Control

The IOControl module is an on-board module of the rc_visard.

Roboception GmbH

Manual: rc_cube

223 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

The IOControl module allows reading the status of the general purpose digital inputs and controlling

the digital general purpose outputs (GPIOs) of the rc_visard. The outputs can be set to LOW or HIGH, or
configured to be HIGH for the exposure time of every image or every second image.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-

tive camera pipeline and have no influence on other pipelines running on the rc_cube.
The purpose of the IOControl module is the control of an external light source or a projector, which is

connected to one of the rc_visard’s GPIOs to be synchronized by the image acquisition trigger. In case
a pattern projector is used to improve stereo matching, the intensity images also show the projected

pattern, whichmight be a disadvantage for image processing tasks that are based on the intensity image

(e.g. edge detection). For this reason, the IOControl module allows setting GPIO outputs to HIGH for the

exposure time of every second image, so that intensity images without the projected pattern are also

available.

6.3.4.1 Parameters

The IOControl module is called rc_iocontrol in the REST-API and is represented in theWeb GUI (Section
7.1) in the desired pipeline under Configuration → IOControl. The user can change the parameters via
theWeb GUI, the REST-API interface (Section 7.3), or via GigE Vision using the DigitalIOControl parameters
LineSelector and LineSource (Category: DigitalIOControl, Section 7.2.3.4).
Parameter overview

This module offers the following run-time parameters:

Table 6.48: The rc_iocontrolmodule’s run-time parameters

Name Type Min Max Default Description

out1_mode string - - Low Out1 mode: [Low, High, ExposureActive,

ExposureAlternateActive]

out2_mode string - - Low Out2 mode: [Low, High, ExposureActive,

ExposureAlternateActive]

Description of run-time parameters

out1_mode and out2_mode (Out1 and Out2)

The output modes for GPIO Out 1 and Out 2 can be set individually:

Low sets the output permanently to LOW. This is the factory default.

High sets the output permanently to HIGH.

ExposureActive sets the output to HIGH for the exposure time of every image.

ExposureAlternateActive sets the output to HIGH for the exposure time of every
second image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/parameters?<out1_

→˓mode|out2_mode>=<value>

API version 1 (deprecated)

Roboception GmbH

Manual: rc_cube

224 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

PUT http://<host>/api/v1/nodes/rc_iocontrol/parameters?<out1_mode|out2_mode>=<value>

Fig. 6.35 shows which images are used for stereo matching and transmission via GigE Vision in

ExposureActivemode with a user-defined frame rate of 8 Hz.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 6.35: Example of using the ExposureActivemode for GPIO Out 1 with a user-defined frame rate of
8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is HIGH for the exposure time of every

image. A disparity image is computed for camera images that are sent out via GigE Vision according to

the user-defined frame rate.

The mode ExposureAlternateActive is meant to be used when an external random dot projector is
connected to the rc_visard’s GPIO Out 1. When setting Out 1 to ExposureAlternateActive, the stereomatching (Section 6.1.2) module only uses images with GPIO Out 1 being HIGH, i.e. projector is on. The
maximum frame rate that is used for stereo matching is therefore half of the frame rate configured

by the user (see FPS, Section 6.1.1.3). All modules which make use of the intensity image, like TagDe-tect (Section 6.2.2) and ItemPick (Section 6.2.3), use the intensity images with GPIO Out 1 being LOW, i.e.
projector is off. Fig. 6.36 shows an example.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 6.36: Example of using the ExposureAlternateActive mode for GPIO Out 1 with a user-defined
frame rate of 8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is HIGH for the exposure

time of every second image. A disparity image is computed for images where Out 1 is HIGH and that are

sent out via GigE Vision according to the user-defined frame rate. In ExposureAlternateActive mode,
intensity images are always transmitted pairwise: one with GPIOOut 1 HIGH, for which a disparity image

might be available, and one with GPIO Out 1 LOW.

Note: In ExposureAlternateActivemode, an intensity image with GPIO Out 1 being HIGH (i.e. with
projection) is always 40 ms away from an intensity image with Out 1 being LOW (i.e. without pro-

jection), regardless of the user-defined frame rate. This needs to be considered when synchronizing

disparity images and camera images without projection in this special mode.

The functionality can also be controlled by the DigitalIOControl parameters of the GenICam interface

(Category: DigitalIOControl, Section 7.2.3.4).
6.3.4.2 Services

Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion.

The IOControl module offers the following services.

Roboception GmbH

Manual: rc_cube

225 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.3. Configuration modules

get_io_values

Retrieves the current state of the rc_visard’s general purpose inputs and outputs (GPIOs).
Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/services/get_io_values

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/get_io_values

Request

This service has no arguments.

Response

The returned timestamp is the time of measurement.

input_mask and output_mask are bit masks defining which bits are used for input and output
values, respectively.

values holds the values of the bits corresponding to input and output as given by the
input_mask and output_mask.

return_code holds possible warnings or error codes and messages. Possible return_code
values are shown below.

Code Description

0 Success

-2 Internal error

-9 License for IOControl is not available
The definition for the response with corresponding datatypes is:

{
"name": "get_io_values",
"response": {
"input_mask": "uint32",
"output_mask": "uint32",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"values": "uint32"

}
}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

Roboception GmbH

Manual: rc_cube

226 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4 Database modules

The rc_cube provides several database modules which enable the user to configure global data which is
used in many detection modules, such as load carriers and regions of interest. Via the REST-API inter-face (Section 7.3) the database modules are only available in API version 2.
The database modules are:

• LoadCarrierDB (rc_load_carrier_db, Section 6.4.1) allows setting, retrieving and deleting load
carriers.

• RoiDB (rc_roi_db , Section 6.4.2) allows setting, retrieving and deleting 2D and 3D regions of in-
terest.

• GripperDB (rc_gripper_db, Section 6.4.3) allows setting, retrieving and deleting grippers for col-
lision checking.

These modules are global on the rc_cube, which means that they run outside the camera pipelines.
Changes to their settings or parameters affect all pipelines running on the rc_cube.

6.4.1 LoadCarrierDB

6.4.1.1 Introduction

The LoadCarrierDB module (Load carrier database module) allows the global definition of load carriers,

which can then be used in many detection modules. The specified load carriers are available for all

modules supporting load carriers on the rc_cube.
Note: This module is global on the rc_cube. Changes to its settings or parameters affect every camera
pipeline running on the rc_cube.
The LoadCarrierDB module is a base module which is available on every rc_cube.

Roboception GmbH

Manual: rc_cube

227 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

Table 6.49: Specifications of the LoadCarrierDB module

Supported load carrier types 4-sided or 3-sided

Supported rim types solid rim, stepped rim or ledged rim

Min. load carrier dimensions 0.1 m x 0.1 m x 0.05 m

Max. load carrier dimensions 2 m x 2 m x 2 m

Max. number of load carriers 50

Load carriers available in ItemPick and BoxPick (Section 6.2.3) and CADMatch (Section 6.2.5)
and SilhouetteMatch (Section 6.2.4)

Supported pose types no pose, orientation prior, exact pose

Supported reference frames camera, external

6.4.1.2 Load carrier definition

A load carrier (bin) is a container with four walls, a floor and a rectangular rim, which can contain objects.

It can be used to limit the volume in which to search for objects or grasp points.

A load carrier is defined by its outer_dimensions and inner_dimensions. The maximum

outer_dimensions are 2.0 meters in every dimension.

The origin of the load carrier reference frame is in the center of the load carrier’s outer box and its z axis
is perpendicular to the load carrier’s floor pointing outwards (see Fig. 6.37).

x
yz

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

Fig. 6.37: Load carrier with reference frame and inner and outer dimensions

Note: Typically, outer and inner dimensions of a load carrier are available in the specifications of the

load carrier manufacturer.

The inner volume of the load carrier is defined by its inner dimensions, but includes a region of 10

cm height above the load carrier, so that also items protruding from the load carrier are considered

for detection or grasp computation. Furthermore, an additional crop_distance is subtracted from the
inner volume in every dimension, which acts as a safety margin and can be configured as run-time

parameter in the LoadCarrier module (see Parameters, Section 6.2.1.5). Fig. 6.38 visualizes the inner
volume of a load carrier. Only points which are inside this volume are considered for detections.

Roboception GmbH

Manual: rc_cube

228 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

0.1 m

crop_distance

Fig. 6.38: Visualization of the inner volume of a load carrier. Only points which are inside this volume

are considered for detections.

Since the load carrier detection is based on the detection of the load carrier’s rim, the rim geometry

must be specified if it cannot be determined from the difference between outer and inner dimensions.

A load carrier with a stepped rim can be defined by setting a rim_thickness. The rim thickness gives the
thickness of the outer part of the rim in the x and y direction. When a rim thickness is given, an optional

rim_step_height can also be specified, which gives the height of the step between the outer and the
inner part of the rim. When the step height is given, it will also be considered during collision checking

(see CollisionCheck, Section 6.3.2). Examples of load carriers with stepped rims are shown in Fig. 6.39 A,
B. In addition to the rim_thickness and rim_step_height the rim_ledge can be specified for defining
load carriers whose inner rim protrudes into the interior of the load carrier, such as pallet cages. The

rim_ledge gives the thickness of the inner part of the rim in the x and y direction. An example of a load
carrier with a ledged rim is shown in Fig. 6.39 C.

ou
te

r_
di

m
en

sio
n

z

rim_thickness (x, y)

inner_dimension (x, y)

outer_dimension (x, y)

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

ou
te

r_
di

m
en

sio
n

z

rim_thickness (x, y)

inner_dimension (x, y)

outer_dimension (x, y)

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

rim_thickness (x, y)

rim_ledge (x, y)

ou
te

r_
di

m
en

sio
n

z

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

inner_dimension (x, y)

outer_dimension (x, y)

A B C

Fig. 6.39: Examples of load carriers with stepped rim (A, B) or ledged rim (C)

The different rim types are applicable to both, standard 4-sided and 3-sided load carriers. For a 3-

sided load carrier, the typemust be THREE_SIDED. If the type is set to STANDARD or left empty, a 4-sided
load carrier is specified. A 3-sided load carrier has one side that is lower than the other three sides.

This height_open_side is measured from the outer bottom of the load carrier. The open side is at the
negative y-axis of the load carrier’s coordinate system. Examples of the two load carrier types are given

Roboception GmbH

Manual: rc_cube

229 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

in Fig. 6.40. The height of the lower side is only considered during collision checking and not required

for the detection of the load carrier.

x
yz

ou
ter

_d
im

en
sio

n y outer_dimension x

di
m

en
sio

n
z

ou
te

r_

inner_dimension x
in

ne
r_

di
m

en
sio

n
z

inn
er_

iim
en

sio
n y

x
yz

ou
ter

_d
im

en
sio

n y outer_dimension x

di
m

en
sio

n
z

ou
te

r_

inner_dimension x

in
ne

r_
di

m
en

sio
n

z

inn
er_

dim
en

sio
n y

he
ig

ht
_o

pe
n_

sid
e

A B

Fig. 6.40: Examples of a standard 4-sided load carrier (A) and a 3-sided load carrier (B)

A load carrier can be specified with a full 3D pose consisting of a position and an orientation quater-
nion, given in a pose_frame. Based on the given pose_type this pose is either used as an orientation
prior (pose_type is ORIENTATION_PRIOR or empty), or as the exact pose of the load carrier (pose_type is
EXACT_POSE).

In case the pose serves as orientation prior, the detected load carrier pose is guaranteed to have the

minimum rotation with respect to the load carrier’s prior pose. This pose type is useful for detecting

tilted load carriers and for resolving the orientation ambiguity in the x and y direction caused by the

symmetry of the load carrier model.

In case the pose type is set to EXACT_POSE, no load carrier detection will be performed on the scene data,
but the given pose will be used in exactly the same way as if the load carrier is detected at that pose.

This pose type is especially useful in cases where load carriers do not change their positions and/or are

hard to detect (e.g. because their rim is too thin or the material is too shiny).

The rc_cube can persistently store up to 50 different load carrier models, each one identified by a differ-
ent id. The configuration of a load carrier model is normally performed offline, during the set up the
desired application. This can be done via the REST-API interface (Section 7.3) or in the rc_cubeWeb GUI.
Note: The configured load carrier models are persistent even over firmware updates and rollbacks.

6.4.1.3 Load carrier compartments

Some detection modules can make use of a load_carrier_compartment to further limit the volume for
the detection, for example ItemPick’s compute_grasps service (see 6.2.3.7). A load carrier compartment
is a box whose pose is defined as the transformation from the load carrier reference frame to the
compartment reference frame, which is located in the center of the compartment box (see Fig. 6.41).

The load carrier compartment is defined for each detection call separately and is not part of the load

carrier definition in the LoadCarrierDB module.

Roboception GmbH

Manual: rc_cube

230 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

x
yz

co
mp

art
me

nt
.bo

x.y

compartment.box.x

com
partm

ent.box.z

Fig. 6.41: Sample compartment inside a load carrier. The coordinate frame shown in the image is the

reference frame of the compartment.

The compartment volume is intersected with the load carrier inner volume to compute the volume for

the detection. If this intersection should also contain the 10 cm region above the load carrier, the height

of the compartment box must be increased accordingly.

6.4.1.4 Interaction with other modules

Internally, the LoadCarrierDB module depends on, and interacts with other on-board modules as listed

below.

Hand-eye calibration

In case the camera has been calibrated to a robot, the load carrier’s exact pose or orientation prior

can be provided in the robot coordinate frame by setting the corresponding pose_frame argument to
external.

Two different pose_frame values can be chosen:

1. Camera frame (camera). The load carrier pose or orientation prior is provided in the camera
frame, and no prior knowledge about the pose of the camera in the environment is required. This

means that the configured load carriers move with the camera. It is the user’s responsibility to

update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). The load carrier pose or orientation prior is provided in the external
frame, configured by the user during the hand-eye calibration process. The module relies on

the on-board Hand-eye calibration module (Section 6.3.1) to retrieve the sensor mounting (static or
robot mounted) and the hand-eye transformation.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

Roboception GmbH

Manual: rc_cube

231 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

6.4.1.5 Services

The LoadCarrierDB module is called rc_load_carrier_db in the REST-API and is represented in theWebGUI (Section 7.1) under Database → Load Carriers. The user can explore and call the LoadCarrierDB
module’s services, e.g. for development and testing, using the REST-API interface (Section 7.3) or the Web
GUI.

The LoadCarrierDB module offers the following services.

set_load_carrier

Persistently stores a load carrier on the rc_cube. All configured load carriers are persistent
over firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/set_load_carrier

Request

Details for the definition of the load_carrier type are given in Load carrier definition (Section
6.4.1.2).

The field type is optional and accepts STANDARD and THREE_SIDED.

The field pose_type is optional and accepts NO_POSE, EXACT_POSE and ORIENTATION_PRIOR.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"load_carrier": {
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"pose_type": "string",
"rim_ledge": {

"x": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

232 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

(continued from previous page)

"y": "float64"
},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_load_carrier",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_load_carriers

Returns the configured load carriers with the requested load_carrier_ids. If no

load_carrier_ids are provided, all configured load carriers are returned.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/get_load_carriers

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"load_carrier_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_load_carriers",
"response": {
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

233 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"pose_type": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_load_carriers

Deletes the configured load carriers with the requested load_carrier_ids. All load carriers
to be deleted must be explicitly stated in load_carrier_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/delete_load_carriers

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

234 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

(continued from previous page)

"load_carrier_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_load_carriers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4.1.6 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Table 6.50: Return codes of the LoadCarrierDB module’s services

Code Description

0 Success

-1 An invalid argument was provided

-10 New element could not be added as the maximum storage capacity of load carriers has

been exceeded

10 The maximum storage capacity of load carriers has been reached

11 An existent persistent model was overwritten by the call to set_load_carrier

6.4.2 RoiDB

6.4.2.1 Introduction

The RoiDBmodule (region of interest databasemodule) allows the global definition of 2D and 3D regions

of interest, which can then be used in many detection modules. The ROIs are available for all modules

supporting 2D or 3D ROIs on the rc_cube.
Note: This module is global on the rc_cube. Changes to its settings or parameters affect every camera
pipeline running on the rc_cube.
The RoiDB module is a base module which is available on every rc_cube.
3D ROIs can be used in CADMatch (Section 6.2.5), ItemPick and BoxPick (Section 6.2.3). 2D ROIs can be
used in SilhouetteMatch (Section 6.2.4), and LoadCarrier (Section 6.2.1).

Roboception GmbH

Manual: rc_cube

235 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

Table 6.51: Specifications of the RoiDB module

Supported ROI types 2D, 3D

Supported ROI geometries 2D ROI: rectangle, 3D ROI: box, sphere

Max. number of ROIs 2D: 100, 3D: 100

ROIs available in 2D: SilhouetteMatch (Section 6.2.4), LoadCarrier (Section 6.2.1), 3D:CADMatch (Section 6.2.5), ItemPick and BoxPick (Section 6.2.3)
Supported reference frames camera, external

6.4.2.2 Region of interest

A region of interest (ROI) defines a volume in space (3D region of interest, region_of_interest), or a
rectangular region in the left camera image (2D region of interest, region_of_interest_2d) which is of
interest for a specific user-application.

A ROI can narrow the volumewhere a load carrier is searched for, or select a volumewhich only contains

items to be detected and/or grasped. Processing times can significantly decrease when using a ROI.

3D regions of interest of the following types (type) are supported:

• BOX, with dimensions box.x, box.y, box.z.

• SPHERE, with radius sphere.radius.

The user can specify the 3D region of interest pose in the camera or the external coordinate system.
External can only be chosen if a Hand-eye calibration (Section 6.3.1) is available. When the sensor is
robot mounted, and the region of interest is defined in the external frame, the current robot pose must

be given to every detect service call that uses this region of interest.

A 2D ROI is defined as a rectangular part of the left camera image, and can be set via the REST-APIinterface (Section 7.3) or the rc_cube Web GUI (Section 7.1) on the page Regions of Interest under Database.
The Web GUI offers an easy-to-use selection tool. Each ROI must have a unique name to address a

specific 2D ROI.

In the REST-API, a 2D ROI is defined by the following values:

• id: Unique name of the region of interest

• offset_x, offset_y: offset in pixels along the x-axis and y-axis from the top-left corner of the
image, respectively

• width, height: width and height in pixels

The rc_cube can persistently store up to 100 different 3D regions of interest and the same number of 2D
regions of interest. The configuration of regions of interest is normally performed offline, during the set

up of the desired application. This can be done via the REST-API interface (Section 7.3) of RoiDB module,
or in the rc_cube Web GUI (Section 7.1) on the page Regions of Interest under Database.
Note: The configured regions of interest are persistent even over firmware updates and rollbacks.

6.4.2.3 Interaction with other modules

Internally, the RoiDB module depends on, and interacts with other on-board modules as listed below.

Hand-eye calibration

In case the camera has been calibrated to a robot, the pose of a 3D ROI can be provided in the robot

coordinate frame by setting the corresponding pose_frame argument.

Two different pose_frame values can be chosen:

Roboception GmbH

Manual: rc_cube

236 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

1. Camera frame (camera). The ROI pose is provided in the camera frame, and no prior knowledge
about the pose of the camera in the environment is required. This means that the configured load

carriers move with the camera. It is the user’s responsibility to update the configured poses if the

camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). The ROI pose is provided in the external frame, configured by the user
during the hand-eye calibration process. The module relies on the on-board Hand-eye calibrationmodule (Section 6.3.1) to retrieve the sensor mounting (static or robot mounted) and the hand-eye
transformation.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

6.4.2.4 Services

The RoiDB module is called rc_roi_db in the REST-API and is represented in the Web GUI (Section 7.1)
under Database → Regions of Interest. The user can explore and call the RoiDB module’s services, e.g.
for development and testing, using the REST-API interface (Section 7.3) or the Web GUI.
The RoiDB module offers the following services.

set_region_of_interest

Persistently stores a 3D region of interest on the rc_cube. All configured 3D regions of interest
are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/set_region_of_interest

Request

Details for the definition of the region_of_interest type are given in Region of inter-est (Section 6.4.2.2).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest": {
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}

(continues on next page)

Roboception GmbH

Manual: rc_cube

237 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

(continued from previous page)

},
"pose_frame": "string",
"sphere": {

"radius": "float64"
},
"type": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_region_of_interest",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest_2d

Persistently stores a 2D region of interest on the rc_cube. All configured 2D regions of interest
are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/set_region_of_interest_2d

Request

Details for the definition of the region_of_interest_2d type are given in Region of inter-est (Section 6.4.2.2).
The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_2d": {
"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_region_of_interest_2d",
"response": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

238 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

(continued from previous page)

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest

Returns the configured 3D regions of interest with the requested region_of_interest_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/get_regions_of_interest

Request

If no region_of_interest_ids are provided, all configured 3D regions of interest are re-
turned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_regions_of_interest",
"response": {

"regions_of_interest": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",

(continues on next page)

Roboception GmbH

Manual: rc_cube

239 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

(continued from previous page)

"sphere": {
"radius": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest_2d

Returns the configured 2D regions of interest with the requested

region_of_interest_2d_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/get_regions_of_interest_2d

Request

If no region_of_interest_2d_ids are provided, all configured 2D regions of interest are
returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_2d_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_regions_of_interest_2d",
"response": {
"regions_of_interest": [
{

"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH

Manual: rc_cube

240 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

delete_regions_of_interest

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/delete_regions_of_interest

Request

All regions of interest to be deleted must be explicitly stated in region_of_interest_ids.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_regions_of_interest",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_regions_of_interest_2d

Deletes the configured 2D regions of interest with the requested

region_of_interest_2d_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/delete_regions_of_interest_2d

Request

All 2D regions of interest to be deleted must be explicitly stated in

region_of_interest_2d_ids.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_2d_ids": [
"string"

]
}

}

Roboception GmbH

Manual: rc_cube

241 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_regions_of_interest_2d",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4.2.5 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Table 6.52: Return codes of the RoiDB module’s services

Code Description

0 Success

-1 An invalid argument was provided

-10 New element could not be added as the maximum storage capacity of regions of interest

has been exceeded

10 The maximum storage capacity of regions of interest has been reached

11 An existent persistent model was overwritten by the call to set_region_of_interest or
set_region_of_interest_2d

6.4.3 GripperDB

6.4.3.1 Introduction

The GripperDB module (gripper database module) is an optional on-board module of the rc_cube and
is licensed with any of the modules ItemPick and BoxPick (Section 6.2.3) or CADMatch (Section 6.2.5) andSilhouetteMatch (Section 6.2.4). Otherwise it requires a separate CollisionCheck license (Section 9.5) to
be purchased.

The module provides services to set, retrieve and delete grippers which can then be used for checking

collisions with a load carrier or other detected objects (only in combination with CADMatch (Section 6.2.5)
and SilhouetteMatch (Section 6.2.4)). The specified grippers are available for all modules supporting
collision checking on the rc_cube.
Note: This module is global on the rc_cube. Changes to its settings or parameters affect every camera
pipeline running on the rc_cube.

Roboception GmbH

Manual: rc_cube

242 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

Table 6.53: Specifications of the GripperDB module

Max. number of grippers 50

Supported gripper element geometries Box, Cylinder, CAD Element

Max. number of elements per gripper 15

Collision checking available in ItemPick and BoxPick (Section 6.2.3), CADMatch (Section
6.2.5) and SilhouetteMatch (Section 6.2.4)

6.4.3.2 Setting a gripper

The gripper is a collision geometry used to determine whether the grasp is in collision with the load

carrier. The gripper consists of up to 15 elements connected to each other.

At this point, the gripper can be built of elements of the following types:

• BOX, with dimensions box.x, box.y, box.z.

• CYLINDER, with radius cylinder.radius and height cylinder.height.

• CAD, with the id cad.id of the chosen CAD element.

Additionally, for each gripper the flange radius, and information about the Tool Center Point (TCP) have

to be defined.

The configuration of the gripper is normally performed offline during the setup of the desired applica-

tion. This can be done via the REST-API interface (Section 7.3) or the rc_cube Web GUI (Section 7.1).
Robot flange radius

Collisions are checked only with the gripper, the robot body is not considered. As a safety feature,

to prevent collisions between the load carrier and the robot, all grasps having any part of the robot’s

flange inside the load carrier can be designated as colliding (see Fig. 6.42). This check is based on the

defined gripper geometry and the flange radius value. It is optional to use this functionality, and it can

be turned on and off with the CollisionCheck module’s run-time parameter check_flange as described
in Parameter overview (Section 6.3.2.3).

A B

Fig. 6.42: Case A would be marked as collision only if check_flange is true, because the robot’s flange
(red) is inside the load carrier. Case B is collision free independent of check_flange.

Uploading gripper CAD elements

A gripper can consist of boxes, cylinders and CAD elements. While boxes and cylinders can be param-

eterized when the gripper is created, the CAD elements must be uploaded beforehand to be available

during gripper creation. A CAD element can be uploaded via the REST-API interface (Section 7.3) as de-
scribed in Section CAD element API (Section 6.4.3.5) or via the rc_cube Web GUI (Section 7.1). Supported
file formats are STEP (*.stp, *.step), STL (*.stl), OBJ (*.obj) and PLY (*.ply). The maximum file size to be

uploaded is limited to 30 MB. The files are internally converted to PLY and, if necessary, simplified. The

CAD elements can be referenced during gripper creation by their ID.

Roboception GmbH

Manual: rc_cube

243 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

Creating a gripper via the REST-API or the Web GUI

When creating a gripper via the REST-API interface (Section 7.3) or theWeb GUI (Section 7.1), each element
of the gripper has a parent element, which defines how they are connected. The gripper is always built
in the direction from the robot flange to the TCP, and at least one element must have ‘flange’ as parent.

The elements’ IDs must be unique and must not be ‘tcp’ or ‘flange’. The pose of the child element has to

be given in the coordinate frame of the parent element. The coordinate frame of an element is always

in its geometric center. Accordingly, for a child element to be exactly below the parent element, the

position of the child element must be computed from the heights of both parent and child element (see

Fig. 6.43).

Pcyl

Pbox

hbox

hcyl

Pdiff = (0, 0, (hcyl+hbox)/2)

Pdiff

Fig. 6.43: Reference frames for gripper creation via the REST-API and the Web GUI

In case a CAD element is used, the element’s origin is defined in the CAD data and is not necessarily

located in the center of the element’s bounding box.

It is recommended to create a gripper via the Web GUI, because it provides a 3D visualization of the

gripper geometry and also allows to automatically attach the child element to the bottom of its parent

element, when the corresponding option for this element is activated. In this case, the elements also

stay attached when any of their sizes change. Automatic attachment of CAD elements uses the ele-

ment’s bounding box as reference. Automatic attachment is only possible when the child element is not

rotated around the x or y axis with respect to its parent.

The reference frame for the first element for the gripper creation is always the center of the robot’s

flange with the z axis pointing outwards. It is possible to create a gripper with a tree structure, corre-

sponding to multiple elements having the same parent element, as long as they are all connected.

Calculated TCP position

After gripper creation via the set_gripper service call, the TCP position in the flange coordinate system
is calculated and returned as tcp_pose_flange. It is important to check if this value is the same as the
robot’s true TCP position. When creating a gripper in the Web GUI the current TCP position is always

displayed in the 3D gripper visualization.

Creating rotationally asymmetric grippers

For grippers which are not rotationally symmetric around the z axis, it is crucial to ensure that the

gripper is properly mounted, so that the representation stored in the GripperDB module corresponds

to reality.

Roboception GmbH

Manual: rc_cube

244 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

6.4.3.3 Services

The GripperDB module is called rc_gripper_db in the REST-API and is represented in the WebGUI (Section 7.1) under Database → Grippers. The user can explore and call the GripperDB module’s
services, e.g. for development and testing, using the REST-API interface (Section 7.3) or the Web GUI.
The GripperDB module offers the following services.

set_gripper

Persistently stores a gripper on the rc_cube. All configured grippers are persistent over
firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/set_gripper

Request

Required arguments:

elements: list of geometric elements for the gripper. Each element must be of
type ‘CYLINDER’ or ‘BOX’ with the corresponding dimensions in the cylinder or
box field, or of type ‘CAD’ with the corresponding id in the cad field. The pose of
each element must be given in the coordinate frame of the parent element (seeSetting a gripper (Section 6.4.3.2) for an explanation of the coordinate frames). The
element’s idmust be unique andmust not be ‘tcp’ or ‘flange’. The parent_id is the
ID of the parent element. It can either be ‘flange’ or it must correspond to another

element in list.

flange_radius: radius of the flange used in case the check_flange run-time pa-
rameter is active.

id: unique name of the gripper

tcp_parent_id: ID of the element on which the TCP is defined

tcp_pose_parent: The pose of the TCP with respect to the coordinate frame of the
element specified in tcp_parent_id.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"elements": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

245 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

(continued from previous page)

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

gripper: returns the gripper as defined in the request with an additional field

tcp_pose_flange. This gives the coordinates of the TCP in the flange coordinate frame for
comparison with the true settings of the robot’s TCP.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "set_gripper",
"response": {
"gripper": {
"elements": [

{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},

(continues on next page)

Roboception GmbH

Manual: rc_cube

246 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

(continued from previous page)

"id": "string",
"parent_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_flange": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grippers

Returns the configured grippers with the requested gripper_ids.

Roboception GmbH

Manual: rc_cube

247 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/get_grippers

Request

If no gripper_ids are provided, all configured grippers are returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"gripper_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_grippers",
"response": {
"grippers": [
{

"elements": [
{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",

(continues on next page)

Roboception GmbH

Manual: rc_cube

248 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

(continued from previous page)

"tcp_pose_flange": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

}

delete_grippers

Deletes the configured grippers with the requested gripper_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/delete_grippers

Request

All grippers to be deleted must be explicitly stated in gripper_ids.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"gripper_ids": [
"string"

]
}

}

Response

Roboception GmbH

Manual: rc_cube

249 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

The definition for the response with corresponding datatypes is:

{
"name": "delete_grippers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4.3.4 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. A
successful service returns with a return_code value of 0. Negative return_code values indicate that the
service failed. Positive return_code values indicate that the service succeeded with additional informa-
tion. The smaller value is selected in case a service has multiple return_code values, but all messages
are appended in the return_codemessage.

The following table contains a list of common codes:

Table 6.54: Return codes of the GripperDB services

Code Description

0 Success

-1 An invalid argument was provided

-7 Data could not be read or written to persistent storage

-9 No valid license for the module

-10 New gripper could not be added as the maximum storage capacity of grippers has been

exceeded

10 The maximum storage capacity of grippers has been reached

11 Existing gripper was overwritten

6.4.3.5 CAD element API

For gripper CAD element upload, download, listing and removal, special REST-API endpoints are pro-

vided. CAD elements can also be uploaded, downloaded and removed via the Web GUI. Up to 50 CAD

elements can be stored persistently on the rc_cube.
The maximum file size to be uploaded is limited to 30 MB.

GET /cad/gripper_elements
Get list of all CAD gripper elements.

Template request

GET /api/v2/cad/gripper_elements HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Roboception GmbH

Manual: rc_cube

250 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

6.4. Database modules

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of GripperElement)
• 404 Not Found – element not found

Referenced Data Models

• GripperElement (Section 7.3.4)
GET /cad/gripper_elements/{id}

Get a CAD gripper element. If the requested content-type is application/octet-stream, the gripper

element is returned as file.

Template request

GET /api/v2/cad/gripper_elements/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the element (required)
Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns GripperElement)
• 404 Not Found – element not found

Referenced Data Models

• GripperElement (Section 7.3.4)
PUT /cad/gripper_elements/{id}

Create or update a CAD gripper element.

Template request

PUT /api/v2/cad/gripper_elements/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

Roboception GmbH

Manual: rc_cube

251 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.4. Database modules

• id (string) – id of the element (required)
Form Parameters

• file – CAD file (required)
Request Headers

• Accept –multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns GripperElement)
• 400 Bad Request – CAD is not valid or max number of elements reached

• 404 Not Found – element not found

• 413 Request Entity Too Large – File too large

Referenced Data Models

• GripperElement (Section 7.3.4)
DELETE /cad/gripper_elements/{id}

Remove a CAD gripper element.

Template request

DELETE /api/v2/cad/gripper_elements/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the element (required)
Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 404 Not Found – element not found

Roboception GmbH

Manual: rc_cube

252 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7 Interfaces

The following interfaces are provided for configuring and obtaining data from the rc_cube:
• Web GUI (Section 7.1)

Easy-to-use graphical interface to configure the rc_cube, do calibrations, view live images,
do service calls, visualize results, etc.

• GigE Vision 2.0/GenICam (Section 7.2)
Images and camera related configuration.

• REST API (Section 7.3)
API to configure the rc_cube, query status information, do service calls, etc.

• Ethernet KRL Interface (EKI) (Section 7.4)
API to configure the rc_cube and do service calls from KUKA KSS robots.

• gRPC image stream (Section 7.5)
Stream synchronized image sets via gRPC.

• Time synchronization (Section 7.7)
Time synchronization between the rc_cube and the application host.

7.1 Web GUI

The rc_cube’s Web GUI can be used to test, calibrate, and configure the device.

7.1.1 Accessing the Web GUI

The Web GUI can be accessed from any web browser, such as Firefox, Google Chrome, or Microsoft

Edge, via the rc_cube’s IP address. The easiest way to access the Web GUI is to simply double click on the
desired device using the rcdiscover-gui tool as explained in Discovery of rc_cube devices (Section 3.3).
Alternatively, some network environments automatically configure the unique host name of the rc_cube
in their Domain Name Server (DNS). In this case, the Web GUI can also be accessed directly using theURL http://<host-name> by replacing <host-name> with the device’s host name.
For Linux and Mac operating systems, this even works without DNS via the multicast Domain Name

System (mDNS), which is automatically used if .local is appended to the host name. Thus, the URL
simply becomes http://<host-name>.local.

7.1.1.1 Access to the rc_visardWeb GUI

For troubleshooting, users can also directly access the Web GUI of the rc_visard device that is connected
to the rc_cube. It is available for the rc_visard on camera pipeline 0 at port 2342 of the rc_cube, and

Roboception GmbH

Manual: rc_cube

253 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.1. Web GUI

hence at the URL http://<host>:2342 where <host> is the IP address or host name of the rc_cube that
the rc_visard is connected to. For camera pipelines 1, 2 or 3 it can be accessed at http://<host>:2343,
http://<host>:2344, and http://<host>:2345, respectively.

By this means, users have access to the rc_visard’s device information or log files.
Note: If a computer screen is directly connected to the rc_cube, it shows the Web GUI with a small
additional menu from which the rc_visard’s Web GUI can be accessed as well.

7.1.2 Exploring the Web GUI

The Web GUI’s dashboard page gives the most important information about the device and the running

camera pipelines.

Fig. 7.1: Dashboard page of the rc_cube’s Web GUI

The page’s side menu permits access to the individual pages of the rc_cube’s Web GUI:
Pipeline gives access to the respective camera pipeline and its camera, detection and configuration

modules. Each camera pipeline provides an overview page with the most important information

about the camera connection and the software modules running in the pipeline.

Roboception GmbH

Manual: rc_cube

254 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.1. Web GUI

Fig. 7.2: Pipeline overview page of the rc_cube’s Web GUI

Each pipeline provides a sub-menu with the individual pages for the modules running in the pipeline:

Camera shows a live stream of the rectified camera images. The frame rate can be reduced to save
bandwidth when streaming to a GigE Vision® client. Furthermore, exposure can be set manually

or automatically. See Parameters (Section 6.1.1.3) for more information.
Depth Image shows a live stream of the left rectified, disparity, and confidence images. The page con-

tains various settings for depth-image computation and filtering. See Parameters (Section 6.1.2.5)
for more information.

Modules gives access to the detection modules of the rc_cube (see Detection modules, Section 6.2).
Configuration gives access to the configuration modules of the rc_cube (see Configuration modules, Sec-

tion 6.3).

The following modules running outside the pipelines can be accessed in the side menu:

Database gives access to the database modules of the rc_cube (see Database modules, Section 6.4).
System gives access to general settings, device information and to the log files, and permits the

firmware or the license file to be updated.

UserSpace gives access to the rc_cube’s UserSpace (see UserSpace, Section 8).
Note: Further information on all parameters in the Web GUI can be obtained by pressing the Info
button next to each parameter.

7.1.3 Web GUI access control

The Web GUI has a simple mechanism to lock the UI against casual and accidental changes.

When enabling Web GUI access control via the System page, you will be asked to set a password. Now
the Web GUI is in a locked mode indicated by the lock symbol in the top bar. All pages, camera streams,

parameters and detections can be inspected as usual, but changes are not possible.

To temporarily unlock the Web GUI and make changes, click the lock symbol and enter the password.

While enabling or disabling Web GUI access control affects anyone accessing this rc_cube, the unlocked
state is only valid for the browser where it was unlocked and indicated by the open lock symbol. It is

automatically locked again after 10 minutes of inactivity.

Web GUI access control can also be disabled again on the System page after providing the current pass-
word.

Roboception GmbH

Manual: rc_cube

255 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.1. Web GUI

Warning: This is not a security feature! It only locks the Web GUI and not the REST-API. It is meant

to prevent accidental and casual changes e.g. via a connected screen.

Note: In case the password is lost, this can be disabled via the REST-API delete ui_lock (Section
7.3.3.4).

7.1.4 Downloading camera images

The Web GUI provides an easy way to download a snapshot of the current scene as a .tar.gz file by

clicking on the camera icon below the image live streams on the Camera page. This snapshot contains:
• the rectified camera images in full resolution as .png files,

• a camera parameter file containing the camera matrix, image dimensions, exposure time, gain

value and the stereo baseline,

• the current IMU readings as imu.csv file, if available,

• a pipeline_status.json file containing information about all modules running inside the pipelines

on the rc_cube,
• a backup.json file containing the settings of the rc_cube including grippers, load carriers and re-
gions of interest,

• a system_info.json file containing system information about the rc_cube.
The filenames contain the timestamps.

7.1.5 Downloading depth images and point clouds

The Web GUI provides an easy way to download the depth data of the current scene as a .tar.gz file

by clicking on the camera icon below the image live streams on the Depth Image page. This snapshot
contains:

• the rectified left and right camera images in full resolution as .png files,

• an image parameter file corresponding to the left image containing the camera matrix, image

dimensions, exposure time, gain value and the stereo baseline,

• the disparity, error and confidence images in the resolution corresponding to the currently chosen

quality as .png files,

• a disparity parameter file corresponding to the disparity image containing the camera matrix,

image dimensions, exposure time, gain value and the stereo baseline, and information about the

disparity values (i.e. invalid values, scale, offset),

• the current IMU readings as imu.csv file, if available,

• a pipeline_status.json file containing information about all modules running inside the pipelines

on the rc_cube,
• a backup.json file containing the settings of the rc_cube including grippers, load carriers and re-
gions of interest,

• a system_info.json file containing system information about the rc_cube.
The filenames contain the timestamps.

When clicking on the mesh icon below the image live streams on the Depth Image page, a snapshot is
downloaded which additionally includes a mesh of the point cloud in the current depth quality (resolu-

tion) as .ply file.

Roboception GmbH

Manual: rc_cube

256 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.2. GigE Vision 2.0/GenICam image interface

Note: Downloading a depth snapshot will trigger an acquisition in the same way as clicking on the

“Acquire” button on the Depth Image page of the Web GUI, and, thus, might affect running applica-
tions.

7.2 GigE Vision 2.0/GenICam image interface

Gigabit Ethernet for Machine Vision (“GigE Vision®” for short) is an industrial camera interface standard

based on UDP/IP (see http://www.gigevision.com). The rc_cube is a GigE Vision® version 2.0 device and
is hence compatible with all GigE Vision® 2.0 compliant frameworks and libraries.

GigE Vision® uses GenICam to describe the camera/device features. For more information about thisGeneric Interface for Cameras see http://www.genicam.org/.
Via this interface the rc_cube provides features such as

• discovery,

• IP configuration,

• configuration of camera related parameters,

• image grabbing, and

• time synchronization via IEEE 1588-2008 PrecisionTimeProtocol (PTPv2).

Note: The rc_cube supports jumbo frames of up to 9000 bytes. Setting an MTU of 9000 on your GigE
Vision client side is recommended for best performance.

Note: Roboception provides tools and a C++ API with examples for discovery, configuration, and im-

age streaming via the GigE Vision/GenICam interface. See http://www.roboception.com/download.

7.2.1 GigE Vision ports

GigE Vision is a UDP based protocol. On the rc_cube the UDP ports are fixed and known:
• UDP port 3956: GigE Vision Control Protocol (GVCP). Used for discovery, control and configuration.

• UDP port 50010: Stream channel source port for GigE Vision Stream Protocol (GVSP) used for

image streaming.

7.2.2 Important GenICam parameters

The following list gives an overview of the relevant GenICam features of the rc_cube that can be read
and/or changed via the GenICam interface. In addition to the standard parameters, which are defined

in the Standard Feature Naming Convention (SFNC, see http://www.emva.org/standards-technology/

genicam/genicam-downloads/), rc_cube devices also offer custom parameters that account for special
features of the Camera (Section 6.1.1) and the Stereo matching (Section 6.1.2) module.

7.2.3 Important standard GenICam features

7.2.3.1 Category: ImageFormatControl

ComponentSelector

• type: Enumeration, one of Intensity, IntensityCombined, Disparity, Confidence, or Error

• default: -

Roboception GmbH

Manual: rc_cube

257 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.gigevision.com
http://www.genicam.org/
http://www.roboception.com/download
http://www.emva.org/standards-technology/genicam/genicam-downloads/
http://www.emva.org/standards-technology/genicam/genicam-downloads/

7.2. GigE Vision 2.0/GenICam image interface

• description: Allows the user to select one of the five image streams for configuration (seeProvided image streams, Section 7.2.6).
ComponentIDValue (read-only)

• type: Integer

• description: The ID of the image stream selected by the ComponentSelector.

ComponentEnable

• type: Boolean

• default: -

• description: If set to true, it enables the image stream selected by ComponentSelector; oth-
erwise, it disables the stream. Using ComponentSelector and ComponentEnable, individual
image streams can be switched on and off.

Width (read-only)

• type: Integer

• description: Image width in pixel of image stream that is currently selected by

ComponentSelector.

Height (read-only)

• type: Integer

• description: Image height in pixel of image stream that is currently selected by

ComponentSelector.

WidthMax (read-only)

• type: Integer

• description: Maximum width of an image.

HeightMax (read-only)

• type: Integer

• description: Maximum height of an image in the streams. This is always 1920 pixels due

to the stacked left and right images in the IntensityCombined stream (see Provided imagestreams, Section 7.2.6).
PixelFormat

• type: Enumeration, one of Mono8, YCbCr411_8 (color cameras only), Coord3D_C16,
Confidence8 and Error8

• description: Pixel format of the selected component. The enumeration only permits to

choose the format among the possibly formats for the selected component. For a color

camera, Mono8 or YCbCr411_8 can be chosen for the Intensity and IntensityCombined com-
ponent.

7.2.3.2 Category: AcquisitionControl

AcquisitionFrameRate

• type: Float, ranges from 1 Hz to 25 Hz

• default: 25 Hz

• description: Frame rate of the camera (FPS, Section 6.1.1.3).
ExposureAuto

• type: Enumeration, one of Continuous, Out1High, AdaptiveOut1, HDR or Off

Roboception GmbH

Manual: rc_cube

258 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.2. GigE Vision 2.0/GenICam image interface

• default: Continuous

• description: Combines exp_control (exposure control, Section 6.1.1.3) and exp_auto_mode
(auto exposure mode, Section 6.1.1.3). Off maps to Manual exposure control. Continuous,
Out1High or AdaptiveOut1 enable Auto exposure control with the respective auto exposuremode where Continuous maps to the Normal exp_auto_mode. HDR enables high-dynamic-
range exposure control.

ExposureTime

• type: Float, ranges from 66 µs to 18000 µs

• default: 5000 µs

• description: The cameras’ exposure time in microseconds for the manual exposure mode

(Exposure, Section 6.1.1.3).
7.2.3.3 Category: AnalogControl

GainSelector (read-only)

• type: Enumeration, is always All

• default: All

• description: The rc_cube currently supports only one overall gain setting.
Gain

• type: Float, ranges from 0 dB to 18 dB

• default: 0 dB

• description: The cameras’ gain value in decibel that is used in manual exposure mode (Gain,
Section 6.1.1.3).

BalanceWhiteAuto (color cameras only)

• type: Enumeration, one of Continuous or Off

• default: Continuous

• description: Can be set to Off for manual white balancing mode or to Continuous for auto
white balancing. This feature is only available on color cameras (wb_auto, Section 6.1.1.3).

BalanceRatioSelector (color cameras only)

• type: Enumeration, one of Red or Blue

• default: Red

• description: Selects ratio to be modified by BalanceRatio. Redmeans red to green ratio and
Bluemeans blue to green ratio. This feature is only available on color cameras.

BalanceRatio (color cameras only)

• type: Float, ranges from 0.125 to 8

• default: 1.2 if Red and 2.4 if Blue is selected in BalanceRatioSelector

• description: Weighting of red or blue to green color channel. This feature is only available on

color cameras (wb_ratio, Section 6.1.1.3).
7.2.3.4 Category: DigitalIOControl

LineSelector

• type: Enumeration, one of Out1, Out2, In1 or In2

• default: Out1

Roboception GmbH

Manual: rc_cube

259 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.2. GigE Vision 2.0/GenICam image interface

• description: Selects the input or output line for getting the current status or setting the

source.

LineStatus (read-only)

• type: Boolean

• description: Current status of the line selected by LineSelector.

LineStatusAll (read-only)

• type: Integer

• description: Current status of GPIO inputs and outputs represented in the lowest four bits.

Table 7.1: Meaning of bits of LineStatusAll field.

Bit 4 3 2 1

GPIO In 2 In 1 Out 2 Out 1

LineSource

• type: Enumeration, one of ExposureActive, ExposureAlternateActive, Low or High

• default: Low

• description: Mode for output line selected by LineSelector as described in the IO-

Control module (out1_mode and out2_mode, Section 6.3.4.1). See also parameter

AcquisitionAlternateFilter for filtering images in ExposureAlternateActivemode.

7.2.3.5 Category: TransportLayerControl / PtpControl

PtpEnable

• type: Boolean

• default: false

• description: Switches PTP synchronization on and off.

7.2.3.6 Category: Scan3dControl

Scan3dDistanceUnit (read-only)

• type: Enumeration, is always Pixel

• description: Unit for the disparity measurements, which is always Pixel.

Scan3dOutputMode (read-only)

• type: Enumeration, is always DisparityC

• description: Mode for the depth measurements, which is always DisparityC.

Scan3dFocalLength (read-only)

• type: Float

• description: Focal length in pixel of image stream selected by ComponentSelector. In case of
the component Disparity, Confidence and Error, the value also depends on the resolution
that is implicitly selected by DepthQuality.

Scan3dBaseline (read-only)

• type: Float

• description: Baseline of the stereo camera in meters.

Scan3dPrinciplePointU (read-only)

Roboception GmbH

Manual: rc_cube

260 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.2. GigE Vision 2.0/GenICam image interface

• type: Float

• description: Horizontal location of the principle point in pixel of image stream selected by

ComponentSelector. In case of the component Disparity, Confidence and Error, the value
also depends on the resolution that is implicitly selected by DepthQuality.

Scan3dPrinciplePointV (read-only)

• type: Float

• description: Vertical location of the principle point in pixel of image stream selected by

ComponentSelector. In case of the component Disparity, Confidence and Error, the value
also depends on the resolution that is implicitly selected by DepthQuality.

Scan3dCoordinateScale (read-only)

• type: Float

• description: The scale factor that has to bemultiplied with the disparity values in the disparity

image stream to get the actual disparity measurements. This value is always 0.0625.

Scan3dCoordinateOffset (read-only)

• type: Float

• description: The offset that has to be added to the disparity values in the disparity image

stream to get the actual disparity measurements. For the rc_cube, this value is always 0 and
can therefore be disregarded.

Scan3dInvalidDataFlag (read-only)

• type: Boolean

• description: Is always true, which means that invalid data in the disparity image is marked
by a specific value defined by the Scan3dInvalidDataValue parameter.

Scan3dInvalidDataValue (read-only)

• type: Float

• description: Is the value which stands for invalid disparity. This value is always 0, which

means that disparity values of 0 correspond to invalid measurements. To distinguish be-

tween invalid disparity measurements and disparity measurements of 0 for objects which

are infinitely far away, the rc_cube sets the disparity value for the latter to the smallest possi-
ble disparity value of 0.0625. This still corresponds to an object distance of several hundred

meters.

7.2.3.7 Category: ChunkDataControl

ChunkModeActive

• type: Boolean

• default: False

• description: Enables chunk data that is delivered with every image.

7.2.4 Custom GenICam features of the rc_cube
7.2.4.1 Category: DeviceControl

RcSystemReady (read-only)

• type: Boolean

• description: Returns whether the device’s boot process has completed and all modules are

running.

Roboception GmbH

Manual: rc_cube

261 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.2. GigE Vision 2.0/GenICam image interface

RcParamLockDisable

• type: Boolean

• default: False

• description: If set to true, the camera and depth image parameters are not locked when a

GigE Vision client is connected to the device. Please note that depending on the connected

GigE Vision client, parameter changes by other applications (e.g. the Web GUI) might not be

noticed by the GigE Vision client, which could lead to unwanted results.

7.2.4.2 Category: AcquisitionControl

AcquisitionAlternateFilter

• type: Enumeration, one of Off, OnlyHigh or OnlyLow

• default: Off

• description: If this parameter is set to OnlyHigh (or OnlyLow) and the LineSource is set to
ExposureAlternateActive for any output, then only camera images are delivered that are
captured while the output is high, i.e. a potentially connected projector is on (or low, i.e. a

potentially connected projector is off). This parameter is a simple means for only getting im-

ages without projected pattern. The minimal time difference between camera and disparity

images will be about 40 ms in this case (see IOControl, Section 6.3.4.1).
AcquisitionMultiPartMode

• type: Enumeration, one of SingleComponent or SynchronizedComponents

• default: SingleComponent

• description: Only effective in MultiPart mode. If this parameter is set to SingleComponent
the images are sent immediately as a single component per frame/buffer when they become

available. This is the same behavior as when MultiPart is not supported by the client. If set to

SynchronizedComponents all enabled components are time synchronized on the rc_cube and
only sent (in one frame/buffer) when they are all available for that timestamp.

ExposureTimeAutoMax

• type: Float, ranges from 66 µs to 18000 µs

• default: 18000 µs

• description: Maximal exposure time in auto exposure mode (Max Exposure, Section 6.1.1.3).
ExposureRegionOffsetX

• type: Integer in the range of 0 to the maximum image width

• default: 0

• description: Horizontal offset of exposure region (Section 6.1.1.3) in pixel.
ExposureRegionOffsetY

• type: Integer in the range of 0 to the maximum image height

• default: 0

• description: Vertical offset of exposure region (Section 6.1.1.3) in pixel.
ExposureRegionWidth

• type: Integer in the range of 0 to the maximum image width

• default: 0

• description: Width of exposure region (Section 6.1.1.3) in pixel.
ExposureRegionHeight

Roboception GmbH

Manual: rc_cube

262 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.2. GigE Vision 2.0/GenICam image interface

• type: Integer in the range of 0 to the maximum image height

• default: 0

• description: Height of exposure region (Section 6.1.1.3) in pixel.
RcExposureAutoAverageMax

• type: Float in the range of 0 to 1

• default: 0.75

• description: Maximum brightness for the auto exposure function (Section 6.1.1.3) as value
between 0 (dark) and 1 (bright).

RcExposureAutoAverageMin

• type: Float in the range of 0 to 1

• default: 0.25

• description: Minimum brightness for the auto exposure function (Section 6.1.1.3) as value be-
tween 0 (dark) and 1 (bright).

7.2.4.3 Category: Scan3dControl

FocalLengthFactor (read-only)

• type: Float

• description: The focal length scaled to an image width of 1 pixel. To get the focal length in

pixels for a certain image, this value must be multiplied by the width of the received image.

See also parameter Scan3dFocalLength.

Baseline (read-only)

• type: Float

• description: This parameter is deprecated. The parameter Scan3dBaseline should be used
instead.

7.2.4.4 Category: DepthControl

DepthAcquisitionMode

• type: Enumeration, one of SingleFrame, SingleFrameOut1 or Continuous

• default: Continuous

• description: In single frame mode, stereo matching is performed upon each call of

DepthAcquisitionTrigger. The SingleFrameOut1 mode can be used to control an external
projector. It sets the line source of Out1 to ExposureAlternateActive upon each trigger and
resets it to Low as soon as the images for stereo matching are grabbed. In continuous mode,
stereo matching is performed continuously.

DepthAcquisitionTrigger

• type: Command

• description: This command triggers stereo matching of the next available stereo image pair,

if DepthAcquisitionMode is set to SingleFrame or SingleFrameOut1.

DepthQuality

• type: Enumeration, one of Low, Medium, High, or Full (only with StereoPlus license)

• default: High

Roboception GmbH

Manual: rc_cube

263 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.2. GigE Vision 2.0/GenICam image interface

• description: Quality of disparity images. Lower quality results in disparity images with lower

resolution (Quality, Section 6.1.2.5).
DepthDoubleShot

• type: Boolean

• default: False

• description: True for improving the stereo matching result of a scene recorded with a projec-
tor by filling holes with depth information computed from images without projector pattern.

(Double-Shot, Section 6.1.2.5).
DepthStaticScene

• type: Boolean

• default: False

• description: True for averaging 8 consecutive camera images for improving the stereomatch-
ing result. (Static, Section 6.1.2.5).

DepthSmooth (read-only if StereoPlus license is not available)

• type: Boolean

• default: False

• description: True for advanced smoothing of disparity values. (Smoothing, Section 6.1.2.5).
DepthFill

• type: Integer, ranges from 0 pixel to 4 pixels

• default: 3 pixels

• description: Value in pixels for Fill-In (Section 6.1.2.5).
DepthSeg

• type: Integer, ranges from 0 pixel to 4000 pixels

• default: 200 pixels

• description: Value in pixels for Segmentation (Section 6.1.2.5).
DepthMinConf

• type: Float, ranges from 0.0 to 1.0

• default: 0.0

• description: Value for Minimum Confidence filtering (Section 6.1.2.5).
DepthMinDepth

• type: Float, ranges from 0.1 m to 100.0 m

• default: 0.1 m

• description: Value in meters for Minimum Distance filtering (Section 6.1.2.5).
DepthMaxDepth

• type: Float, ranges from 0.1m to 100.0 m

• default: 100.0 m

• description: Value in meters for Maximum Distance filtering (Section 6.1.2.5).
DepthMaxDepthErr

• type: Float, ranges from 0.01 m to 100.0 m

• default: 100.0 m

Roboception GmbH

Manual: rc_cube

264 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.2. GigE Vision 2.0/GenICam image interface

• description: Value in meters for Maximum Depth Error filtering (Section 6.1.2.5).

7.2.5 Chunk data

The rc_cube supports chunk parameters that are transmitted with every image. Chunk parameters all
have the prefix Chunk. Their meaning equals their non-chunk counterparts, except that they belong to
the corresponding image, e.g. Scan3dFocalLength depends on ComponentSelector and DepthQuality
as both can change the image resolution. The parameter ChunkScan3dFocalLength that is delivered
with an image fits to the resolution of the corresponding image.

Particularly useful chunk parameters are:

• ChunkComponentSelector selects for which component to extract the chunk data in MultiPart
mode.

• ChunkComponentID and ChunkComponentIDValue provide the relation of the image to its compo-
nent (e.g. camera image or disparity image) without guessing from the image format or size.

• ChunkLineStatusAll provides the status of all GPIOs at the time of image acquisition. See
LineStatusAll above for a description of bits.

• ChunkScan3d... parameters are useful for 3D reconstruction as described in Section Image streamconversions (Section 7.2.7).
• ChunkPartIndex provides the index of the image part in this MultiPart block for the selected com-
ponent (ChunkComponentSelector).

• ChunkRcOut1Reduction gives a ratio of how much the brightness of the images with GPIO Out1
LOW is lower than the brightness of the images with GPIO Out1 HIGH. For example, a value

of 0.2 means that the images with GPIO Out1 LOW have 20% less brightness than the images

with GPIO Out1 HIGH. This value is only available if exp_auto_mode of the stereo camera is set to
AdaptiveOut1 or Out1High (auto exposure mode, Section 6.1.1.3).

Chunk data is enabled by setting the GenICam parameter ChunkModeActive to True.

7.2.6 Provided image streams

The rc_cube provides the following five different image streams via the GenICam interface:

Roboception GmbH

Manual: rc_cube

265 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.2. GigE Vision 2.0/GenICam image interface

Component name PixelFormat Description

Intensity

Mono8 (monochrome
cameras)

YCbCr411_8 (color
cameras)

Left rectified cam-

era image

IntensityCombined

Mono8 (monochrome
cameras)

YCbCr411_8 (color
cameras)

Left rectified cam-

era image stacked

on right rectified

camera image

Disparity Coord3D_C16 Disparity image in

desired resolution,

i.e., DepthQuality
of Full, High,
Medium or Low

Confidence Confidence8 Confidence image

Error Error8 (custom:

0x81080001)

Disparity error im-

age

Each image comes with a buffer timestamp and the PixelFormat given in the above table. This PixelFor-
mat should be used to distinguish between the different image types. Images belonging to the same

acquisition timestamp can be found by comparing the GenICam buffer timestamps.

7.2.7 Image stream conversions

The disparity image contains 16 bit unsigned integer values. These values must be multiplied by the

scale value given in the GenICam feature Scan3dCoordinateScale to get the disparity values 𝑑 in pix-
els. To compute the 3D object coordinates from the disparity values, the focal length and the baseline

as well as the principle point are required. These parameters are transmitted as GenICam featuresScan3dFocalLength, Scan3dBaseline, Scan3dPrincipalPointU and Scan3dPrincipalPointV. The focal length
and principal point depend on the image resolution of the selected component. Knowing these values,

the pixel coordinates and the disparities can be transformed into 3D object coordinates in the camera

coordinate frame using the equations described in Computing depth images and point clouds (Section
6.1.2.2).

Assuming that 𝑑16𝑖𝑘 is the 16 bit disparity value at column 𝑖 and row 𝑘 of a disparity image, the float
disparity in pixels 𝑑𝑖𝑘 is given by

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · Scan3dCoordinateScale

The 3D reconstruction in meters can be written with the GenICam parameters as:

𝑃𝑥 = (𝑖+ 0.5− Scan3dPrincipalPointU)
Scan3dBaseline

𝑑𝑖𝑘
,

𝑃𝑦 = (𝑘 + 0.5− Scan3dPrincipalPointV)
Scan3dBaseline

𝑑𝑖𝑘
,

𝑃𝑧 = Scan3dFocalLength
Scan3dBaseline

𝑑𝑖𝑘
.

The confidence image contains 8 bit unsigned integer values. These values have to be divided by 255 to

get the confidence as value between 0 an 1.

The error image contains 8 bit unsigned integer values. The error 𝑒𝑖𝑘 must be multiplied by the scale

Roboception GmbH

Manual: rc_cube

266 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

value given in the GenICam feature Scan3dCoordinateScale to get the disparity-error values 𝑑𝑒𝑝𝑠 in pixels.
According to the description in Confidence and error images (Section 6.1.2.3), the depth error 𝑧𝑒𝑝𝑠 in
meters can be computed with GenICam parameters as

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · Scan3dCoordinateScale,

𝑧𝑒𝑝𝑠 =
𝑒𝑖𝑘 · Scan3dCoordinateScale · Scan3dFocalLength · Scan3dBaseline

(𝑑𝑖𝑘)2
.

Note: It is preferable to enable chunk data with the parameter ChunkModeActive and to use
the chunk parameters ChunkScan3dCoordinateScale, ChunkScan3dFocalLength, ChunkScan3dBaseline,ChunkScan3dPrincipalPointU and ChunkScan3dPrincipalPointV that are delivered with every image, be-
cause their values already fit to the image resolution of the corresponding image.

For more information about disparity, error, and confidence images, please refer to Stereo match-ing (Section 6.1.2).

7.3 REST-API interface

Aside from the GenICam interface (Section 7.2), the rc_cube offers a comprehensive RESTful web interface
(REST-API) which any HTTP client or library can access. Whereas most of the provided parameters,

services, and functionalities can also be accessed via the user-friendly Web GUI (Section 7.1), the REST-
API serves rather as a machine-to-machine interface to the rc_cube, e.g., to programmatically

• set and get run-time parameters of computation nodes, e.g., of cameras or image processing

modules;

• do service calls, e.g., to start and stop individual computational nodes, or to use offered services

such as the hand-eye calibration;

• read the current state of the system and individual computational nodes; or

• update the rc_cube’s firmware or license.
Note: In the rc_cube’s REST-API, a node is a computational component that bundles certain algorith-
mic functionality and offers a holistic interface (parameters, services, current status). Examples for

such nodes are the stereo matching node or the hand-eye calibration node.

7.3.1 General API structure

The general entry point to the rc_cube’s API is http://<host>/api/, where <host> is either the device’s
IP address or its host name as known by the respective DHCP server, as explained in network configuration
(Section 3.4). Accessing this entry point with a web browser lets the user explore and test the full API

during run-time using the Swagger UI (Section 7.3.5).
For actual HTTP requests, the current API version is appended to the entry point of the API, i.e., http:/
/<host>/api/v2. All data sent to and received by the REST-API follows the JavaScript Object Notation
(JSON). The API is designed to let the user create, retrieve, modify, and delete so-called resources as

listed in Available resources and requests (Section 7.3.3) using the HTTP requests below.

Roboception GmbH

Manual: rc_cube

267 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

Request type Description

GET Access one or more resources

and return the result as JSON.

PUT Modify a resource and return

the modified resource as JSON.

DELETE Delete a resource.

POST Upload file (e.g., license or

firmware image).

Depending on the type and the specific request itself, arguments to HTTP requests can be transmitted

as part of the path (URI) to the resource, as query string, as form data, or in the body of the request.
The following examples use the command line tool curl, which is available for various operating systems.
See https://curl.haxx.se.

• Get a node’s current status; its name is encoded in the path (URI)

curl -X GET 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching'

• Get values of some of a node’s parameters using a query string

curl -X GET 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters?
→˓name=minconf&name=maxdepth'

• Set a node’s parameter as JSON-encoded text in the body of the request

curl -X PUT --header 'Content-Type: application/json' -d '[{"name": "mindepth", "value": 0.
→˓1}]' 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters'

As for the responses to such requests, some common return codes for the rc_cube’s API are:
Status Code Description

200 OK The request was successful; the

resource is returned as JSON.

400 Bad Request A required attribute or argu-

ment of the API request is miss-

ing or invalid.

404 Not Found A resource could not be ac-

cessed; e.g., an ID for a resource

could not be found.

403 Forbidden Access is (temporarily) forbid-

den; e.g., some parameters are

locked while a GigE Vision appli-

cation is connected.

429 Too many requests Rate limited due to excessive re-

quest frequency.

The following listing shows a sample response to a successful request that accesses information about

the rc_stereomatching node’s minconf parameter:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 157

{
"name": "minconf",
"min": 0,
"default": 0,
"max": 1,

(continues on next page)

Roboception GmbH

Manual: rc_cube

268 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://curl.haxx.se

7.3. REST-API interface

(continued from previous page)

"value": 0,
"type": "float64",
"description": "Minimum confidence"

}

Note: The actual behavior, allowed requests, and specific return codes depend heavily on the specific

resource, context, and action. Please refer to the rc_cube’s available resources (Section 7.3.3) and to
each software module’s (Section 6) parameters and services.

7.3.2 Migration from API version 1

API version 1 has become deprecated with the 22.01 firmware release of the rc_cube. The following
changes were introduced in API version 2.

• All 3D-camera, detection and configuration modules which were located under /nodes in API ver-
sion 1 are now under /pipelines/<pipeline number>/nodes to support multiple pipelines run-
ning on the rc_cube, e.g. /pipelines/1/nodes/rc_camera.

• Configuring load carriers, grippers and regions of interest is now only possible in the global

database modules, which are located under /nodes, e.g. /nodes/rc_load_carrier_db. The corre-
sponding services in the detection modules have been removed or deprecated.

• Templates can now be accessed under /templates, e.g. /templates/rc_silhouettematch.

7.3.3 Available resources and requests

The available REST-API resources are structured into the following parts:

• /nodes Access the rc_cube’s global Database modules (Section 6.4) with their run-time status, pa-
rameters, and offered services, for storing data used in all camera pipelines and multiple

modules, such as load carriers, grippers and regions of interest.

• /pipelines Access to the status and configuration of the camera pipelines.

• /pipelines/<number>/nodes Access the rc_cube’s 3D-camera, detection and configuration soft-ware modules (Section 6) of the camera pipeline with the specified number, with their run-
time status, parameters, and offered services.

• /templates Access the object templates on the rc_cube.
• /system Access the system state, set network configuration, configure the camera pipeline types,

and manage licenses as well as firmware updates.

• /userspace Access the UserSpace on the rc_cube.
• /logs Access the log files on the rc_cube.

7.3.3.1 Nodes, parameters, and services

Nodes represent the rc_cube’s softwaremodules (Section 6), each bundling a certain algorithmic function-
ality. All available global REST-API database nodes can be listed with their service calls and parameters

using

curl -X GET http://<host>/api/v2/nodes

Information about a specific node (e.g., rc_load_carrier_db) can be retrieved using

curl -X GET http://<host>/api/v2/nodes/rc_load_carrier_db

Roboception GmbH

Manual: rc_cube

269 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

All available 3D camera, detection and configuration REST-API nodes can be listed with their service calls

and parameters using

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes

Information about a specific node (e.g., rc_camera on camera pipeline 1) can be retrieved using

curl -X GET http://<host>/api/v2/pipelines/1/nodes/rc_camera

Status: During run-time, each node offers information about its current status. This includes not only

the current processing status of the module (e.g., running or stale), but most nodes also of-
fer run-time statistics or read-only parameters, so-called status values. As an example, the

rc_camera values can be retrieved using

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_camera/status

Note: The returned status values are specific to individual nodes and are documented in the

respective software module (Section 6).
Note: The status values are only reported when the respective node is in the running state.

Parameters: Most nodes expose parameters via the rc_cube’s REST-API to allow their run-time behav-
iors to be changed according to application context or requirements. The REST-API permits to read

and write a parameter’s value, but also provides further information such asminimum, maximum,

and default values.

As an example, the rc_stereomatching parameters can be retrieved using

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_stereomatching/
→˓parameters

Its quality parameter could be set to Full using

curl -X PUT http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_stereomatching/
→˓parameters?quality=Full

or equivalently

curl -X PUT --header 'Content-Type: application/json' -d '{ "value": "Full" }' http://<host>
→˓/api/v2/pipelines/<pipeline number>/nodes/rc_stereomatching/parameters/quality

Note: Run-time parameters are specific to individual nodes and are documented in the respec-

tive software module (Section 6).
Note: Most of the parameters that nodes offer via the REST-API can be explored and tested via

the rc_cube’s user-friendly Web GUI (Section 7.1).
Note: Some parameters exposed via the rc_cube’s REST-API are also available from the GigEVision 2.0/GenICam image interface (Section 7.2). Please note that setting those parameters via
the REST-API or Web GUI is prohibited if a GenICam client is connected.

In addition, each node that offers run-time parameters also features a service to restore the de-

fault values for all of its parameters.

Services: Some nodes also offer services that can be called via REST-API, e.g., to restore parameters as

discussed above, or to start and stop nodes. As an example, the services of the hand-eye calibrationmodule (Section 6.3.1.5) could be listed using

Roboception GmbH

Manual: rc_cube

270 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_hand_eye_calibration/
→˓services

A node’s service is called by issuing a PUT request for the respective resource and providing the
service-specific arguments (see the "args" field of the Service data model, Section 7.3.4). As an
example, the stereo matching module can be triggered to do an acquisition by:

curl -X PUT --header 'Content-Type: application/json' -d '{ "args": {} }' http://<host>/api/
→˓v2/pipelines/<pipeline number>/nodes/rc_stereomatching/services/acquisition_trigger

Note: The services and corresponding argument data models are specific to individual nodes

and are documented in the respective software module (Section 6).
The following list includes all REST-API requests regarding the global database nodes’ status, parame-

ters, and services calls:

GET /nodes
Get list of all available global nodes.

Template request

GET /api/v2/nodes HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_roi_db",
"parameters": [],
"services": [
"set_region_of_interest",
"get_regions_of_interest",
"delete_regions_of_interest",
"set_region_of_interest_2d",
"get_regions_of_interest_2d",
"delete_regions_of_interest_2d"

],
"status": "running"

},
{

"name": "rc_load_carrier_db",
"parameters": [],
"services": [
"set_load_carrier",
"get_load_carriers",
"delete_load_carriers"

],
"status": "running"

},
{

"name": "rc_gripper_db",
"parameters": [],
"services": [
"set_gripper",
"get_grippers",
"delete_grippers"

],
"status": "running"

(continues on next page)

Roboception GmbH

Manual: rc_cube

271 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

(continued from previous page)

}
]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of NodeInfo)
Referenced Data Models

• NodeInfo (Section 7.3.4)
GET /nodes/{node}

Get info on a single global node.

Template request

GET /api/v2/nodes/<node> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_roi_db",
"parameters": [],
"services": [

"set_region_of_interest",
"get_regions_of_interest",
"delete_regions_of_interest",
"set_region_of_interest_2d",
"get_regions_of_interest_2d",
"delete_regions_of_interest_2d"

],
"status": "running"

}

Parameters

• node (string) – name of the node (required)
Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeInfo)
• 404 Not Found – node not found

Referenced Data Models

• NodeInfo (Section 7.3.4)
GET /nodes/{node}/services

Get descriptions of all services a global node offers.

Template request

Roboception GmbH

Manual: rc_cube

272 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

GET /api/v2/nodes/<node>/services HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "string",
"name": "string",
"response": {}

}
]

Parameters

• node (string) – name of the node (required)
Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Service)
• 404 Not Found – node not found

Referenced Data Models

• Service (Section 7.3.4)
GET /nodes/{node}/services/{service}

Get description of a global node’s specific service.

Template request

GET /api/v2/nodes/<node>/services/<service> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Parameters

• node (string) – name of the node (required)
• service (string) – name of the service (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Service)

Roboception GmbH

Manual: rc_cube

273 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.3.4)
PUT /nodes/{node}/services/{service}

Call a service of a node. The required args and resulting response depend on the specific node

and service.

Template request

PUT /api/v2/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json application/ubjson

{}

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Parameters

• node (string) – name of the node (required)
• service (string) – name of the service (required)

Request JSON Object

• service args (object) – example args (required)
Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – Service call completed (returns Service)
• 403 Forbidden – Service call forbidden, e.g. because there is no valid license for

this module.

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.3.4)
GET /nodes/{node}/status

Get status of a global node.

Template request

GET /api/v2/nodes/<node>/status HTTP/1.1

Sample response

Roboception GmbH

Manual: rc_cube

274 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": []

}

Parameters

• node (string) – name of the node (required)
Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeStatus)
• 404 Not Found – node not found

Referenced Data Models

• NodeStatus (Section 7.3.4)
The following list includes all REST-API requests regarding the pipeline-specific 3D camera, detection

and configuration nodes’ status, parameters, and services calls:

GET /pipelines/{pipeline}/nodes
Get list of all available nodes.

Template request

GET /api/v2/pipelines/<pipeline>/nodes HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_camera",
"parameters": [
"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"reset_defaults"

],
"status": "running"

},
{

"name": "rc_hand_eye_calibration",
"parameters": [
"grid_width",
"grid_height",
"robot_mounted"

],
"services": [

(continues on next page)

Roboception GmbH

Manual: rc_cube

275 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)

"reset_defaults",
"set_pose",
"reset",
"save",
"calibrate",
"get_calibration"

],
"status": "idle"

},
{

"name": "rc_stereomatching",
"parameters": [
"quality",
"seg",
"fill",
"minconf",
"mindepth",
"maxdepth",
"maxdeptherr"

],
"services": [

"reset_defaults"
],
"status": "running"

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of NodeInfo)
Referenced Data Models

• NodeInfo (Section 7.3.4)
GET /pipelines/{pipeline}/nodes/{node}

Get info on a single node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_camera",
"parameters": [

"fps",
"exp_auto",
"exp_value",
"exp_max"

],

(continues on next page)

Roboception GmbH

Manual: rc_cube

276 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

(continued from previous page)

"services": [
"reset_defaults"

],
"status": "running"

}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeInfo)
• 404 Not Found – node not found

Referenced Data Models

• NodeInfo (Section 7.3.4)
GET /pipelines/{pipeline}/nodes/{node}/parameters

Get parameters of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/parameters?name=<name> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 25

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": true

},
{

"default": 0.007,
"description": "Maximum exposure time in s if exp_auto is true",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_max",
"type": "float64",

(continues on next page)

Roboception GmbH

Manual: rc_cube

277 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)

"value": 0.007
}

]

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
• node (string) – name of the node (required)

Query Parameters

• name (string) – limit result to parameters with name (optional)
Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Parameter)
• 404 Not Found – node not found

Referenced Data Models

• Parameter (Section 7.3.4)
PUT /pipelines/{pipeline}/nodes/{node}/parameters

Update multiple parameters.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/parameters HTTP/1.1
Accept: application/json application/ubjson

[
{

"name": "string",
"value": {}

}
]

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",

(continues on next page)

Roboception GmbH

Manual: rc_cube

278 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)

"type": "bool",
"value": false

},
{

"default": 0.005,
"description": "Manual exposure time in s if exp_auto is false",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_value",
"type": "float64",
"value": 0.005

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
• node (string) – name of the node (required)

Request JSON Array of Objects

• parameters (ParameterNameValue) – array of parameters (required)
Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Parameter)
• 400 Bad Request – invalid parameter value

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by

a running GigE Vision application or there is no valid license for this module.

• 404 Not Found – node not found

Referenced Data Models

• Parameter (Section 7.3.4)
• ParameterNameValue (Section 7.3.4)

GET /pipelines/{pipeline}/nodes/{node}/parameters/{param}
Get a specific parameter of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/parameters/<param> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": 25,
"description": "Frames per second in Hertz",
"max": 25,
"min": 1,

(continues on next page)

Roboception GmbH

Manual: rc_cube

279 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)

"name": "fps",
"type": "float64",
"value": 10

}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
• node (string) – name of the node (required)
• param (string) – name of the parameter (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Parameter)
• 404 Not Found – node or parameter not found

Referenced Data Models

• Parameter (Section 7.3.4)
PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

Update a specific parameter of a node.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/parameters/<param> HTTP/1.1
Accept: application/json application/ubjson

{
"value": {}

}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": 25,
"description": "Frames per second in Hertz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
• node (string) – name of the node (required)
• param (string) – name of the parameter (required)

Request JSON Object

• parameter (ParameterValue) – parameter to be updated as JSON object (re-quired)

Roboception GmbH

Manual: rc_cube

280 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Parameter)
• 400 Bad Request – invalid parameter value

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by

a running GigE Vision application or there is no valid license for this module.

• 404 Not Found – node or parameter not found

Referenced Data Models

• ParameterValue (Section 7.3.4)
• Parameter (Section 7.3.4)

GET /pipelines/{pipeline}/nodes/{node}/services
Get descriptions of all services a node offers.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/services HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "Restarts the module.",
"name": "restart",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Starts the module.",
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Stops the module.",
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

]

Roboception GmbH

Manual: rc_cube

281 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Service)
• 404 Not Found – node not found

Referenced Data Models

• Service (Section 7.3.4)
GET /pipelines/{pipeline}/nodes/{node}/services/{service}

Get description of a node’s specific service.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/services/<service> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "int32"

},
"description": "Save a pose (grid or gripper) for later calibration.",
"name": "set_pose",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
• node (string) – name of the node (required)
• service (string) – name of the service (required)

Response Headers

Roboception GmbH

Manual: rc_cube

282 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Service)
• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.3.4)
PUT /pipelines/{pipeline}/nodes/{node}/services/{service}

Call a service of a node. The required args and resulting response depend on the specific node

and service.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "set_pose",
"response": {
"message": "Grid detected, pose stored.",
"status": 1,
"success": true

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
• node (string) – name of the node (required)
• service (string) – name of the service (required)

Request JSON Object

• service args (object) – example args (required)
Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – Service call completed (returns Service)
• 403 Forbidden – Service call forbidden, e.g. because there is no valid license for

this module.

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.3.4)

Roboception GmbH

Manual: rc_cube

283 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

GET /pipelines/{pipeline}/nodes/{node}/status
Get status of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/status HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": {
"baseline": "0.0650542",
"color": "0",
"exp": "0.00426667",
"focal": "0.844893",
"fps": "25.1352",
"gain": "12.0412",
"height": "960",
"temp_left": "39.6",
"temp_right": "38.2",
"time": "0.00406513",
"width": "1280"

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeStatus)
• 404 Not Found – node not found

Referenced Data Models

• NodeStatus (Section 7.3.4)
7.3.3.2 Pipelines

Pipelines represent the rc_cube’s camera pipelines.
The following list includes all REST-API requests regarding the camera pipelines’ configuration:

GET /pipelines
Get active pipelines

Template request

GET /api/v2/pipelines HTTP/1.1

Status Codes

• 200 OK – successful operation

Roboception GmbH

Manual: rc_cube

284 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

GET /pipelines/{pipeline}
Get active pipeline type and status

Template request

GET /api/v2/pipelines/<pipeline> HTTP/1.1

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
Status Codes

• 200 OK – successful operation

GET /system/pipelines
Get pipeline configuration.

Template request

GET /api/v2/system/pipelines HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"config": {
"0": {

"type": "rc_visard"
}

},
"max_pipelines": 4,
"pending_changes": false

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

GET /system/pipelines/config/{pipeline}
Get configuration for specific pipeline.

Template request

GET /api/v2/system/pipelines/config/<pipeline> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"0": {

"type": "rc_visard"
}

}

Parameters

Roboception GmbH

Manual: rc_cube

285 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

PUT /system/pipelines/config/{pipeline}
Update configuration for specific pipeline.

Template request

PUT /api/v2/system/pipelines/config/<pipeline>?type=<type> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"type": "rc_visard"

}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)
Query Parameters

• type (string) – pipeline type (one of rc_visard, rc_viscore, blaze) (required)
Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 400 Bad Request – invalid pipeline name or type

DELETE /system/pipelines/config/{pipeline}
Delete specific pipeline.

Template request

DELETE /api/v2/system/pipelines/config/<pipeline> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"message": "Pipeline 1 deleted"

}

Parameters

• pipeline (string) – name of the pipeline (one of 1, 2, 3) (required)
Response Headers

• Content-Type – application/json application/ubjson

Roboception GmbH

Manual: rc_cube

286 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

7.3. REST-API interface

Status Codes

• 200 OK – successful operation

• 400 Bad Request – invalid pipeline name, e.g. pipeline 0 cannot be deleted

7.3.3.3 UserSpace

UserSpace information including running apps and their published ports can be queried via the

userspace endpoint. An app can be of type container or compose (compose stack with potentially
multiple containers).

GET /userspace
Get UserSpace information.

Template request

GET /api/v2/userspace HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"apps": [

{
"containers": [

{
"host_ports": [
{
"port": 8888,
"protocol": "http"

}
],
"name": "hello_rc_cube",
"status": "running"

}
],
"name": "hello_rc_cube",
"type": "container"

},
{

"containers": [
{
"host_ports": [

{
"port": 8080,
"protocol": "http"

}
],
"name": "grafana",
"status": "running"

},
{
"host_ports": [

{
"port": 9090,
"protocol": "http"

}
],
"name": "prometheus",
"status": "running"

(continues on next page)

Roboception GmbH

Manual: rc_cube

287 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

7.3. REST-API interface

(continued from previous page)

}
],
"name": "rc_cube_monitoring",
"type": "compose"

}
],
"available": true,
"enabled": true

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns UserSpace)
Referenced Data Models

• UserSpace (Section 7.3.4)
7.3.3.4 System and logs

The following resources and requests expose the rc_cube’s system-level API. They enable
• access to log files (system-wide or module-specific)

• access to information about the device and run-time statistics such as date, MAC address, clock-

time synchronization status, and available resources;

• management of installed software licenses; and

• the rc_cube to be updated with a new firmware image.
GET /logs

Get list of available log files.

Template request

GET /api/v2/logs HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"date": 1503060035.0625782,
"name": "rcsense-api.log",
"size": 730

},
{

"date": 1503060035.741574,
"name": "stereo.log",
"size": 39024

},
{

"date": 1503060044.0475223,
"name": "camera.log",
"size": 1091

}
]

Roboception GmbH

Manual: rc_cube

288 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of LogInfo)
Referenced Data Models

• LogInfo (Section 7.3.4)
GET /logs/{log}

Get a log file. Content type of response depends on parameter ‘format’.

Template request

GET /api/v2/logs/<log>?format=<format>&limit=<limit> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"date": 1581609251.8168414,
"log": [

{
"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 registered with control access.",
"timestamp": 1581609249.61

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 deregistered.",
"timestamp": 1581609249.739

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 registered with control access.",
"timestamp": 1581609250.94

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 deregistered.",
"timestamp": 1581609251.819

}
],
"name": "gev.log",
"size": 42112

}

Parameters

• log (string) – name of the log file (required)
Query Parameters

• format (string) – return log as JSON or raw (one of json, raw; default: json)(optional)
• limit (integer) – limit to last x lines in JSON format (default: 100) (optional)

Roboception GmbH

Manual: rc_cube

289 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

Response Headers

• Content-Type – text/plain application/json

Status Codes

• 200 OK – successful operation (returns Log)
• 404 Not Found – log not found

Referenced Data Models

• Log (Section 7.3.4)
GET /system

Get system information on device.

Template request

GET /api/v2/system HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dns": {

"dns_servers": [
"10.0.0.1",
"1.1.1.1"

],
"manual_dns_servers": [
"1.1.1.1"

]
},
"dongle_id": "dinkey:1234",
"firmware": {

"active_image": {
"image_version": "22.04.0"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "22.01.0"

},
"next_boot_image": "active_image"

},
"hostname": "rc-cube-00012e96ef39",
"link_speed": 1000,
"mac": "00:01:2e:96:ef:39",
"model_name": "rc_cube S",
"network": {
"current_method": "DHCP",
"default_gateway": "10.0.3.254",
"ip_address": "10.0.2.40",
"settings": {

"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.111",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

},
"subnet_mask": "255.255.252.0"

},
"ntp_status": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

290 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)

"accuracy": "0.000032666 seconds slow of NTP time",
"synchronized": true

},
"pipelines": {
"config": {

"0": {
"type": "rc_visard"

},
"1": {

"type": "rc_visard"
}

},
"max_pipelines": 2,
"pending_changes": false

},
"ptp_status": {

"master_ip": "",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "off"

},
"ready": true,
"reboot_required": false,
"sensor_interfaces": {

"sensor0": {
"link_speed": 2500

}
},
"serial": "00012e96ef39",
"time": 1649678734.0306993,
"uptime": 336455.25,
"userspace": {

"available": true,
"enabled": true

}
}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns SysInfo)
Referenced Data Models

• SysInfo (Section 7.3.4)
GET /system/backup

Get backup.

Template request

GET /api/v2/system/backup?pipelines=<pipelines>&load_carriers=<load_carriers>®ions_of_

→˓interest=<regions_of_interest>&grippers=<grippers> HTTP/1.1

Query Parameters

• pipelines (boolean) – backup pipelines with node settings, i.e. parameters and
preferred_orientation (default: True) (optional)

Roboception GmbH

Manual: rc_cube

291 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

• load_carriers (boolean) – backup load_carriers (default: True) (optional)
• regions_of_interest (boolean) – backup regions_of_interest (default: True)(optional)
• grippers (boolean) – backup grippers (default: True) (optional)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

POST /system/backup
Restore backup.

Template request

POST /api/v2/system/backup HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"return_code": {
"message": "backup restored",
"value": 0

},
"warnings": []

}

Request JSON Object

• backup (object) – backup data as json object (required)
Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

GET /system/disk_info
Get disk space info

Template request

GET /api/v2/system/disk_info HTTP/1.1

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

Roboception GmbH

Manual: rc_cube

292 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

GET /system/dns
Get DNS settings.

Template request

GET /api/v2/system/dns HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dns": {

"dns_servers": [
"10.0.0.1",
"1.1.1.1"

],
"manual_dns_servers": [
"1.1.1.1"

]
}

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns DNS)
Referenced Data Models

• DNS (Section 7.3.4)
PUT /system/dns

Set manual DNS servers.

Template request

PUT /api/v2/system/dns HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dns": {

"dns_servers": [
"10.0.0.1",
"1.1.1.1"

],
"manual_dns_servers": [
"1.1.1.1"

]
}

}

Request JSON Object

Roboception GmbH

Manual: rc_cube

293 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

• manual_dns_servers (ManualDNSServers) –Manual DNS servers (required)
Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns DNS)
• 400 Bad Request – invalid/missing arguments

Referenced Data Models

• ManualDNSServers (Section 7.3.4)
• DNS (Section 7.3.4)

GET /system/license
Get information about licenses installed on device.

Template request

GET /api/v2/system/license HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"components": {

"hand_eye_calibration": true,
"rectification": true,
"stereo": true

},
"valid": true

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns LicenseInfo)
Referenced Data Models

• LicenseInfo (Section 7.3.4)
POST /system/license

Update license on device with a license file.

Template request

POST /api/v2/system/license HTTP/1.1
Accept: multipart/form-data

Form Parameters

• file – license file (required)
Request Headers

Roboception GmbH

Manual: rc_cube

294 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

• Accept –multipart/form-data

Status Codes

• 200 OK – successful operation

• 400 Bad Request – not a valid license

GET /system/network
Get current network configuration.

Template request

GET /api/v2/system/network HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"current_method": "DHCP",
"default_gateway": "10.0.3.254",
"ip_address": "10.0.1.41",
"settings": {

"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

},
"subnet_mask": "255.255.252.0"

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NetworkInfo)
Referenced Data Models

• NetworkInfo (Section 7.3.4)
GET /system/network/settings

Get current network settings.

Template request

GET /api/v2/system/network/settings HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

}

Roboception GmbH

Manual: rc_cube

295 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NetworkSettings)
Referenced Data Models

• NetworkSettings (Section 7.3.4)
PUT /system/network/settings

Set current network settings.

Template request

PUT /api/v2/system/network/settings HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

}

Request JSON Object

• settings (NetworkSettings) – network settings to apply (required)
Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NetworkSettings)
• 400 Bad Request – invalid/missing arguments

• 403 Forbidden – Changing network settings forbidden because this is locked by

a running GigE Vision application.

Referenced Data Models

• NetworkSettings (Section 7.3.4)
PUT /system/reboot

Reboot the device.

Template request

PUT /api/v2/system/reboot HTTP/1.1

Status Codes

Roboception GmbH

Manual: rc_cube

296 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

7.3. REST-API interface

• 200 OK – successful operation

GET /system/rollback
Get information about currently active and inactive firmware/system images on device.

Template request

GET /api/v2/system/rollback HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_cube_v1.1.0"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "rc_cube_v1.0.0"

},
"next_boot_image": "active_image"

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns FirmwareInfo)
Referenced Data Models

• FirmwareInfo (Section 7.3.4)
PUT /system/rollback

Rollback to previous firmware version (inactive system image).

Template request

PUT /api/v2/system/rollback HTTP/1.1

Status Codes

• 200 OK – successful operation

• 400 Bad Request – already set to use inactive partition on next boot

• 500 Internal Server Error – internal error

GET /system/time
Get system time in UTC as string with format “YYYY-MM-DD hh:mm:ss”

Template request

GET /api/v2/system/time HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

(continues on next page)

Roboception GmbH

Manual: rc_cube

297 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

7.3. REST-API interface

(continued from previous page)

{
"utc": "2023-10-05 08:35:26"

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

PUT /system/time
Set system time in UTC as string with format “YYYY-MM-DD hh:mm:ss”

Template request

PUT /api/v2/system/time?utc=<utc> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"utc": "2023-10-05 08:35:26"

}

Query Parameters

• utc (string) – Time in UTC as string with format “YYYY-MM-DD hh:mm:ss” (re-quired)
Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 400 Bad Request – invalid/missing arguments

• 403 Forbidden – Changing time forbidden because time is synchronized via NTP

or PTP.

GET /system/ui_lock
Get UI lock status.

Template request

GET /api/v2/system/ui_lock HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": false

}

Response Headers

Roboception GmbH

Manual: rc_cube

298 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

7.3. REST-API interface

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns UILock)
Referenced Data Models

• UILock (Section 7.3.4)
DELETE /system/ui_lock

Remove UI lock.

Template request

DELETE /api/v2/system/ui_lock HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": false,
"valid": false

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

POST /system/ui_lock
Verify or set UI lock.

Template request

POST /api/v2/system/ui_lock?hash=<hash>&set=<set> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": true,
"valid": true

}

Query Parameters

• hash (string) – hash of the UI lock password (required)
• set (boolean) – set new hash instead of veryfing (optional)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

Roboception GmbH

Manual: rc_cube

299 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

GET /system/update
Get information about currently active and inactive firmware/system images on device.

Template request

GET /api/v2/system/update HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_cube_v1.1.0"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "rc_cube_v1.0.0"

},
"next_boot_image": "active_image"

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns FirmwareInfo)
Referenced Data Models

• FirmwareInfo (Section 7.3.4)
POST /system/update

Update firmware/system image with a mender artifact. Reboot is required afterwards in order to

activate updated firmware version.

Template request

POST /api/v2/system/update HTTP/1.1
Accept: multipart/form-data

Form Parameters

• file –mender artifact file (required)
Request Headers

• Accept –multipart/form-data

Status Codes

• 200 OK – successful operation

• 400 Bad Request – client error, e.g. no valid mender artifact

7.3.4 Data type definitions

The REST-API defines the following data models, which are used to access or modify the available re-sources (Section 7.3.3) either as required attributes/parameters of the requests or as return types.
DNS: DNS settings.

An object of type DNS has the following properties:

Roboception GmbH

Manual: rc_cube

300 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

7.3. REST-API interface

• dns_servers (array of string)

• manual_dns_servers (array of string)

Template object

{
"dns_servers": [

"string",
"string"

],
"manual_dns_servers": [

"string",
"string"

]
}

DNS objects are nested in SysInfo, and are used in the following requests:
• GET /system/dns

• PUT /system/dns

FirmwareInfo: Information about currently active and inactive firmware images, and what image is/will

be booted.

An object of type FirmwareInfo has the following properties:

• active_image (ImageInfo) - see description of ImageInfo
• fallback_booted (boolean) - true if desired image could not be booted and fallback boot to

the previous image occurred

• inactive_image (ImageInfo) - see description of ImageInfo
• next_boot_image (string) - firmware image that will be booted next time (one of

active_image, inactive_image)

Template object

{
"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

}

FirmwareInfo objects are nested in SysInfo, and are used in the following requests:
• GET /system/rollback

• GET /system/update

GripperElement: CAD gripper element

An object of type GripperElement has the following properties:

• id (string) - Unique identifier of the element

Template object

{
"id": "string"

}

Roboception GmbH

Manual: rc_cube

301 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

GripperElement objects are used in the following requests:

• GET /cad/gripper_elements

• GET /cad/gripper_elements/{id}

• PUT /cad/gripper_elements/{id}

HostPort: Port exposed on host

An object of type HostPort has the following properties:

• port (integer)

• protocol (string)

Template object

{
"port": 0,
"protocol": "string"

}

HostPort objects are nested in UserSpaceContainer.
ImageInfo: Information about specific firmware image.

An object of type ImageInfo has the following properties:

• image_version (string) - image version

Template object

{
"image_version": "string"

}

ImageInfo objects are nested in FirmwareInfo.
LicenseComponentConstraint: Constraints on the module version.

An object of type LicenseComponentConstraint has the following properties:

• max_version (string) - optional maximum supported version (exclusive)

• min_version (string) - optional minimum supported version (inclusive)

Template object

{
"max_version": "string",
"min_version": "string"

}

LicenseComponentConstraint objects are nested in LicenseConstraints.
LicenseComponents: List of the licensing status of the individual software modules. The respective

flag is true if the module is unlocked with the currently applied software license.

An object of type LicenseComponents has the following properties:

• hand_eye_calibration (boolean) - hand-eye calibration module

• rectification (boolean) - image rectification module

• stereo (boolean) - stereo matching module

Template object

Roboception GmbH

Manual: rc_cube

302 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

{
"hand_eye_calibration": false,
"rectification": false,
"stereo": false

}

LicenseComponents objects are nested in LicenseInfo.
LicenseConstraints: Version constrains for modules.

An object of type LicenseConstraints has the following properties:

• image_version (LicenseComponentConstraint) - see description of LicenseComponentCon-straint
Template object

{
"image_version": {

"max_version": "string",
"min_version": "string"

}
}

LicenseConstraints objects are nested in LicenseInfo.
LicenseInfo: Information about the currently applied software license on the device.

An object of type LicenseInfo has the following properties:

• components (LicenseComponents) - see description of LicenseComponents
• components_constraints (LicenseConstraints) - see description of LicenseConstraints
• valid (boolean) - indicates whether the license is valid or not

Template object

{
"components": {

"hand_eye_calibration": false,
"rectification": false,
"stereo": false

},
"components_constraints": {
"image_version": {

"max_version": "string",
"min_version": "string"

}
},
"valid": false

}

LicenseInfo objects are used in the following requests:

• GET /system/license

Log: Content of a specific log file represented in JSON format.

An object of type Log has the following properties:

• date (float) - UNIX time when log was last modified

• log (array of LogEntry) - the actual log entries
• name (string) - name of log file

• size (integer) - size of log file in bytes

Roboception GmbH

Manual: rc_cube

303 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

Template object

{
"date": 0,
"log": [

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

},
{

"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}
],
"name": "string",
"size": 0

}

Log objects are used in the following requests:

• GET /logs/{log}

LogEntry: Representation of a single log entry in a log file.

An object of type LogEntry has the following properties:

• component (string) - module name that created this entry

• level (string) - log level (one of DEBUG, INFO, WARN, ERROR, FATAL)

• message (string) - actual log message

• timestamp (float) - Unix time of log entry

Template object

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}

LogEntry objects are nested in Log.
LogInfo: Information about a specific log file.

An object of type LogInfo has the following properties:

• date (float) - UNIX time when log was last modified

• name (string) - name of log file

• size (integer) - size of log file in bytes

Template object

{
"date": 0,
"name": "string",
"size": 0

}

LogInfo objects are used in the following requests:

Roboception GmbH

Manual: rc_cube

304 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

• GET /logs

ManualDNSServers: List of manual DNS servers.

An object of type ManualDNSServers has the following properties:

• manual_dns_servers (array of string)

Template object

{
"manual_dns_servers": [

"string",
"string"

]
}

ManualDNSServers objects are used in the following requests:

• PUT /system/dns

NetworkInfo: Current network configuration.

An object of type NetworkInfo has the following properties:

• current_method (string) - method by which current settings were applied (one of INIT,
LinkLocal, DHCP, PersistentIP, TemporaryIP)

• default_gateway (string) - current default gateway

• ip_address (string) - current IP address

• settings (NetworkSettings) - see description of NetworkSettings
• subnet_mask (string) - current subnet mask

Template object

{
"current_method": "string",
"default_gateway": "string",
"ip_address": "string",
"settings": {

"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "string"

},
"subnet_mask": "string"

}

NetworkInfo objects are nested in SysInfo, and are used in the following requests:
• GET /system/network

NetworkSettings: Current network settings.

An object of type NetworkSettings has the following properties:

• dhcp_enabled (boolean) - DHCP enabled

• persistent_default_gateway (string) - Persistent default gateway

• persistent_ip_address (string) - Persistent IP address

• persistent_ip_enabled (boolean) - Persistent IP enabled

• persistent_subnet_mask (string) - Persistent subnet mask

Template object

Roboception GmbH

Manual: rc_cube

305 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

{
"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "string"

}

NetworkSettings objects are nested in NetworkInfo, and are used in the following requests:
• GET /system/network/settings

• PUT /system/network/settings

NodeInfo: Description of a computational node running on device.

An object of type NodeInfo has the following properties:

• name (string) - name of the node

• parameters (array of string) - list of the node’s run-time parameters

• services (array of string) - list of the services this node offers

• status (string) - status of the node (one of unknown, down, idle, running)

Template object

{
"name": "string",
"parameters": [

"string",
"string"

],
"services": [

"string",
"string"

],
"status": "string"

}

NodeInfo objects are used in the following requests:

• GET /nodes

• GET /nodes/{node}

• GET /pipelines/{pipeline}/nodes

• GET /pipelines/{pipeline}/nodes/{node}

NodeStatus: Detailed current status of the node including run-time statistics.

An object of type NodeStatus has the following properties:

• status (string) - status of the node (one of unknown, down, idle, running)

• timestamp (float) - Unix time when values were last updated

• values (object) - dictionary with current status/statistics of the node

Template object

{
"status": "string",
"timestamp": 0,
"values": {}

}

Roboception GmbH

Manual: rc_cube

306 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

NodeStatus objects are used in the following requests:

• GET /nodes/{node}/status

• GET /pipelines/{pipeline}/nodes/{node}/status

NtpStatus: Status of the NTP time sync.

An object of type NtpStatus has the following properties:

• accuracy (string) - time sync accuracy reported by NTP

• synchronized (boolean) - synchronized with NTP server

Template object

{
"accuracy": "string",
"synchronized": false

}

NtpStatus objects are nested in SysInfo.
Parameter: Representation of a node’s run-time parameter. The parameter’s ‘value’ type (and hence

the types of the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be

one of the built-in primitive data types.

An object of type Parameter has the following properties:

• default (type not defined) - the parameter’s default value

• description (string) - description of the parameter

• max (type not defined) - maximum value this parameter can be assigned to

• min (type not defined) - minimum value this parameter can be assigned to

• name (string) - name of the parameter

• type (string) - the parameter’s primitive type represented as string (one of bool, int8, uint8,
int16, uint16, int32, uint32, int64, uint64, float32, float64, string)

• value (type not defined) - the parameter’s current value

Template object

{
"default": {},
"description": "string",
"max": {},
"min": {},
"name": "string",
"type": "string",
"value": {}

}

Parameter objects are used in the following requests:

• GET /pipelines/{pipeline}/nodes/{node}/parameters

• PUT /pipelines/{pipeline}/nodes/{node}/parameters

• GET /pipelines/{pipeline}/nodes/{node}/parameters/{param}

• PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

ParameterNameValue: Parameter name and value. The parameter’s ‘value’ type (and hence the types

of the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the

built-in primitive data types.

An object of type ParameterNameValue has the following properties:

Roboception GmbH

Manual: rc_cube

307 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

• name (string) - name of the parameter

• value (type not defined) - the parameter’s current value

Template object

{
"name": "string",
"value": {}

}

ParameterNameValue objects are used in the following requests:

• PUT /pipelines/{pipeline}/nodes/{node}/parameters

ParameterValue: Parameter value. The parameter’s ‘value’ type (and hence the types of the ‘min’, ‘max’

and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the built-in primitive

data types.

An object of type ParameterValue has the following properties:

• value (type not defined) - the parameter’s current value

Template object

{
"value": {}

}

ParameterValue objects are used in the following requests:

• PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

PtpStatus: Status of the IEEE1588 (PTP) time sync.

An object of type PtpStatus has the following properties:

• master_ip (string) - IP of the master clock

• offset (float) - time offset in seconds to the master

• offset_dev (float) - standard deviation of time offset in seconds to the master

• offset_mean (float) - mean time offset in seconds to the master

• state (string) - state of PTP (one of off, unknown, INITIALIZING, FAULTY, DISABLED, LISTENING,
PASSIVE, UNCALIBRATED, SLAVE)

Template object

{
"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

}

PtpStatus objects are nested in SysInfo.
Service: Representation of a service that a node offers.

An object of type Service has the following properties:

• args (ServiceArgs) - see description of ServiceArgs
• description (string) - short description of this service

• name (string) - name of the service

• response (ServiceResponse) - see description of ServiceResponse

Roboception GmbH

Manual: rc_cube

308 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

Template object

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Service objects are used in the following requests:

• GET /nodes/{node}/services

• GET /nodes/{node}/services/{service}

• PUT /nodes/{node}/services/{service}

• GET /pipelines/{pipeline}/nodes/{node}/services

• GET /pipelines/{pipeline}/nodes/{node}/services/{service}

• PUT /pipelines/{pipeline}/nodes/{node}/services/{service}

ServiceArgs: Arguments required to call a service with. The general representation of these arguments

is a (nested) dictionary. The specific content of this dictionary depends on the respective node and

service call.

ServiceArgs objects are nested in Service.
ServiceResponse: The response returned by the service call. The general representation of this re-

sponse is a (nested) dictionary. The specific content of this dictionary depends on the respective

node and service call.

ServiceResponse objects are nested in Service.
SysInfo: System information about the device.

An object of type SysInfo has the following properties:

• dns (DNS) - see description of DNS
• firmware (FirmwareInfo) - see description of FirmwareInfo
• hostname (string) - Hostname

• link_speed (integer) - Ethernet link speed in Mbps

• mac (string) - MAC address

• network (NetworkInfo) - see description of NetworkInfo
• ntp_status (NtpStatus) - see description of NtpStatus
• ptp_status (PtpStatus) - see description of PtpStatus
• ready (boolean) - system is fully booted and ready

• sensor_interfaces (object) - Available sensor interfaces with their current link speed

• serial (string) - device serial number

• time (float) - system time as Unix timestamp

• ui_lock (UILock) - see description of UILock
• uptime (float) - system uptime in seconds

Template object

Roboception GmbH

Manual: rc_cube

309 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

{
"dns": {

"dns_servers": [
"string",
"string"

],
"manual_dns_servers": [
"string",
"string"

]
},
"firmware": {

"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

},
"hostname": "string",
"link_speed": 0,
"mac": "string",
"network": {
"current_method": "string",
"default_gateway": "string",
"ip_address": "string",
"settings": {

"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "string"

},
"subnet_mask": "string"

},
"ntp_status": {

"accuracy": "string",
"synchronized": false

},
"ptp_status": {

"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

},
"ready": false,
"sensor_interfaces": {},
"serial": "string",
"time": 0,
"ui_lock": {
"enabled": false

},
"uptime": 0

}

SysInfo objects are used in the following requests:

• GET /system

Template: Detection template

Roboception GmbH

Manual: rc_cube

310 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

An object of type Template has the following properties:

• id (string) - Unique identifier of the template

Template object

{
"id": "string"

}

Template objects are used in the following requests:

• GET /templates/rc_boxpick

• GET /templates/rc_boxpick/{id}

• PUT /templates/rc_boxpick/{id}

• GET /templates/rc_cadmatch

• GET /templates/rc_cadmatch/{id}

• PUT /templates/rc_cadmatch/{id}

• GET /templates/rc_silhouettematch

• GET /templates/rc_silhouettematch/{id}

• PUT /templates/rc_silhouettematch/{id}

UILock: UI lock status.

An object of type UILock has the following properties:

• enabled (boolean)

Template object

{
"enabled": false

}

UILock objects are nested in SysInfo, and are used in the following requests:
• GET /system/ui_lock

UserSpace: UserSpace information

An object of type UserSpace has the following properties:

• apps (array of UserSpaceApp) - UserSpace apps
• available (boolean) - UserSpace available

• enabled (boolean) - UserSpace enabled

Template object

{
"apps": [

{
"containers": [

{
"description": "string",
"health": "string",
"host_ports": [
{
"port": 0,
"protocol": "string"

},

(continues on next page)

Roboception GmbH

Manual: rc_cube

311 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

(continued from previous page)

{
"port": 0,
"protocol": "string"

}
],
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

},
{
"description": "string",
"health": "string",
"host_ports": [
{
"port": 0,
"protocol": "string"

},
{
"port": 0,
"protocol": "string"

}
],
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

}
],
"name": "string",
"type": "string"

},
{

"containers": [
{
"description": "string",
"health": "string",
"host_ports": [
{
"port": 0,
"protocol": "string"

},
{
"port": 0,
"protocol": "string"

}
],
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

},
{
"description": "string",
"health": "string",

(continues on next page)

Roboception GmbH

Manual: rc_cube

312 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

(continued from previous page)

"host_ports": [
{
"port": 0,
"protocol": "string"

},
{
"port": 0,
"protocol": "string"

}
],
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

}
],
"name": "string",
"type": "string"

}
],
"available": false,
"enabled": false

}

UserSpace objects are used in the following requests:

• GET /userspace

UserSpaceApp: UserSpace app

An object of type UserSpaceApp has the following properties:

• containers (array of UserSpaceContainer) - containers in this app
• name (string) - name of the app

• type (string) - type of the app (one of container, compose)

Template object

{
"containers": [

{
"description": "string",
"health": "string",
"host_ports": [

{
"port": 0,
"protocol": "string"

},
{
"port": 0,
"protocol": "string"

}
],
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

},
(continues on next page)

Roboception GmbH

Manual: rc_cube

313 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

(continued from previous page)

{
"description": "string",
"health": "string",
"host_ports": [

{
"port": 0,
"protocol": "string"

},
{
"port": 0,
"protocol": "string"

}
],
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

}
],
"name": "string",
"type": "string"

}

UserSpaceApp objects are nested in UserSpace.
UserSpaceContainer: container

An object of type UserSpaceContainer has the following properties:

• description (string) - value of label org.opencontainers.image.description

• health (string) - health of the container (if container has healthcheck) (one of starting,
healthy, unhealthy)

• host_ports (array of HostPort) - Ports exposed on host
• name (string) - name of the container

• status (string) - status of the container (one of restarting, running, paused, exited)

• title (string) - value of label org.opencontainers.image.title

• url (string) - value of label org.opencontainers.image.url

• vendor (string) - value of label org.opencontainers.image.vendor

• version (string) - value of label org.opencontainers.image.version

Template object

{
"description": "string",
"health": "string",
"host_ports": [
{

"port": 0,
"protocol": "string"

},
{

"port": 0,
"protocol": "string"

}
],

(continues on next page)

Roboception GmbH

Manual: rc_cube

314 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

(continued from previous page)

"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

}

UserSpaceContainer objects are nested in UserSpaceApp.

7.3.5 Swagger UI

The rc_cube’s Swagger UI allows developers to easily visualize and interact with the REST-API, e.g., for
development and testing. Accessing http://<host>/api/ or http://<host>/api/swagger (the former
will automatically be redirected to the latter) opens a visualization of the rc_cube’s general API struc-
ture including all available resources and requests (Section 7.3.3) and offers a simple user interface for
exploring all of its features.

Note: Users must be aware that, although the rc_cube’s Swagger UI is designed to explore and test
the REST-API, it is a fully functional interface. That is, any issued requests are actually processed and

particularly PUT, POST, and DELETE requests might change the overall status and/or behavior of the
device.

Roboception GmbH

Manual: rc_cube

315 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://swagger.io/

7.3. REST-API interface

Fig. 7.3: Initial view of the rc_cube’s Swagger UI with its resources and requests

Using this interface, available resources and requests can be explored by clicking on them to uncollapse

or recollapse them. The following figure shows an example of how to get a node’s current status by

filling in the necessary parameters (pipeline number and node name) and clicking Execute. This action
results in the Swagger UI showing, amongst others, the actual curl command that was executed when
issuing the request as well as the response body showing the current status of the requested node in a

JSON-formatted string.

Roboception GmbH

Manual: rc_cube

316 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

Fig. 7.4: Result of requesting the rc_stereomatching node’s status

Some actions, such as setting parameters or calling services, require more complex parameters to an

HTTP request. The Swagger UI allows developers to explore the attributes required for these actions

during run-time, as shown in the next example. In the figure below, the attributes required for the

the rc_hand_eye_calibration node’s set_pose service are explored by performing a GET request on
this resource. The response features a full description of the service offered, including all required

arguments with their names and types as a JSON-formatted string.

Roboception GmbH

Manual: rc_cube

317 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.3. REST-API interface

Fig. 7.5: The result of the GET request on the set_pose service shows the required arguments for this
service call.

Users can easily use this preformatted JSON string as a template for the service arguments to actually

call the service:

Roboception GmbH

Manual: rc_cube

318 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.4. KUKA Ethernet KRL Interface

Fig. 7.6: Filling in the arguments of the set_pose service request

7.4 KUKA Ethernet KRL Interface

The rc_cube provides an Ethernet KRL Interface (EKI Bridge), which allows communicating with therc_cube from KUKA KRL via KUKA.EthernetKRL XML.
Note: The component is optional and requires a separate Roboception’s EKIBridge license (Section
9.5) to be purchased.

Note: The KUKA.EthernetKRL add-on software package version 2.2 or newer must be activated on

the robot controller to use this component.

The EKI Bridge can be used to programmatically

• do service calls, e.g. to start and stop individual computational nodes, or to use offered services

such as the hand-eye calibration or the computation of grasp poses;

• set and get run-time parameters of computation nodes, e.g. of the camera, or disparity calcula-

tion.

Note: A known limitation of the EKI Bridge is that strings representing valid numbers will be con-

verted to int/float. Hence user-defined names (like ROI IDs, etc.) should always contain at least one

letter so they can be used in service call arguments.

Roboception GmbH

Manual: rc_cube

319 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.4. KUKA Ethernet KRL Interface

7.4.1 Ethernet connection configuration

The EKI Bridge listens on port 7000 for EKI XML messages and transparently bridges the rc_cube’s REST-API v2 (Section 7.3). The received EKImessages are transformed to JSON and forwarded to the rc_cube’s
REST-API. The response from the REST-API is transformed back to EKI XML.

The EKI Bridge gives access to run-time parameters and offered services of all computational nodes

described in Software modules (Section 6).
The Ethernet connection to the rc_cube on the robot controller is configured using XML configuration
files.

The EKI XML configuration files of all nodes running on the rc_cube are available for download at:
https://doc.rc-visard.com/latest/en/eki.html#eki-xml-configuration-files

Each node offering run-time parameters has an XML configuration file for setting and getting its param-

eters. These are named following the scheme <node_name>-parameters.xml. Each node’s service has its
own XML configuration file. These are named following the scheme <node_name>-<service_name>.xml.

The IP of the rc_cube in the network needs to be filled in the XML file.
The port is already set to 7000, which corresponds to pipeline 0. This needs to be adjusted if a different

pipeline should be used. The port number is 7000 + pipeline number, so 7001 for pipeline 1, etc.

These files must be stored in the directory C:\KRC\ROBOTER\Config\User\Common\EthernetKRL of the
robot controller and they are read in when a connection is initialized.

As an example, an Ethernet connection to configure the rc_stereomatching parameters is established
with the following KRL code.

DECL EKI_Status RET
RET = EKI_INIT("rc_stereomatching-parameters")
RET = EKI_Open("rc_stereomatching-parameters")

; ----------- Desired operation -----------

RET = EKI_Close("rc_stereomatching-parameters")

Note: The EKI Bridge automatically terminates the connection to the client if the received XML tele-

gram is invalid.

7.4.2 Generic XML structure

For data transmission, the EKI Bridge uses <req> as root XML element (short for request).

The root tag always includes the following elements.

• <node>. This includes a child XML element used by the EKI Bridge to identify the target node. The
node name is already included in the XML configuration file.

• <end_of_request>. End of request flag that triggers the request.

The following listing shows the generic XML structure for data transmission.

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

For data reception, the EKI Bridge uses <res> as root XML element (short for response). The root tag
always includes a <return_code> child element.

Roboception GmbH

Manual: rc_cube

320 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://doc.rc-visard.com/latest/en/eki.html#eki-xml-configuration-files

7.4. KUKA Ethernet KRL Interface

<RECEIVE>
<XML>

<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

Note: By default the XML configuration files uses 998 as flag to notify KRL that the response data

record has been received. If this value is already in use, it should be changed in the corresponding

XML configuration file.

7.4.2.1 Return code

The <return_code> element consists of a value and a message attribute.

As for all other components, a successful request returns with a res/return_code/@value of 0. Neg-
ative values indicate that the request failed. The error message is contained in res/return_code/
@message. Positive values indicate that the request succeeded with additional information, contained in
res/return_code/@message as well.

The following codes can be issued by the EKI Bridge component.

Table 7.2: Return codes of the EKI Bridge component

Code Description

0 Success

-1 Parsing error in the conversion from XML to JSON

-2 Internal error

-5 Connection error from the REST-API

-9 Missing or invalid license for EKI Bridge component

Note: The EKI Bridge can also return return code values specific to individual nodes. They are docu-

mented in the respective software module (Section 6).
Note: Due to limitations in KRL, the maximum length of a string returned by the EKI Bridge is 512

characters. All messages larger than this value are truncated.

7.4.3 Services

For the nodes’ services, the XML schema is generated from the service’s arguments and response in

JavaScript Object Notation (JSON) described in Software modules (Section 6). The conversion is done
transparently, except for the conversion rules described below.

Conversions of poses:

A pose is a JSON object that includes position and orientation keys.

{
"pose": {
"position": {
"x": "float64",
"y": "float64",
"z": "float64",

},
"orientation": {

(continues on next page)

Roboception GmbH

Manual: rc_cube

321 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.4. KUKA Ethernet KRL Interface

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64",
"w": "float64",

}
}

}

This JSON object is converted to a KRL FRAME in the XML message.

<pose X="..." Y="..." Z="..." A="..." B="..." C="..."></pose>

Positions are converted from meters to millimeters and orientations are converted from

quaternions to KUKA ABC (in degrees).

Note: No other unit conversions are included in the EKI Bridge. All dimensions and 3D

coordinates that don’t belong to a pose are expected and returned in meters.

Arrays:

Arrays are identified by adding the child element <le> (short for list element) to the list name.
As an example, the JSON object

{
"rectangles": [
{
"x": "float64",
"y": "float64"

}
]

}

is converted to the XML fragment

<rectangles>
<le>
<x>...</x>
<y>...</y>

</le>
</rectangles>

Use of XML attributes:

All JSON keys whose values are a primitive data type and don’t belong to an array are stored

in attributes. As an example, the JSON object

{
"item": {
"uuid": "string",
"confidence": "float64",
"rectangle": {
"x": "float64",
"y": "float64"

}
}

}

is converted to the XML fragment

<item uuid="..." confidence="...">
<rectangle x="..." y="...">

(continues on next page)

Roboception GmbH

Manual: rc_cube

322 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.4. KUKA Ethernet KRL Interface

(continued from previous page)

</rectangle>
</item>

7.4.3.1 Request XML structure

The <SEND> element in the XML configuration file for a generic service follows the specification below.

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/service/<service_name>" Type="STRING"/>
<ELEMENT Tag="req/args/<argX>" Type="<argX_type>"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <service> element includes a child XML element that is used by the EKI Bridge to identify the target
service from the XML telegram. The service name is already included in the configuration file.

The <args> element includes the service arguments and should be configured with EKI_Set<Type> KRL
instructions.

As an example, the <SEND> element of the rc_load_carrier_db’s get_load_carriers service (see Load-CarrierDB, Section 6.4.1) is:
<SEND>

<XML>
<ELEMENT Tag="req/node/rc_load_carrier_db" Type="STRING"/>
<ELEMENT Tag="req/service/get_load_carriers" Type="STRING"/>
<ELEMENT Tag="req/args/load_carrier_ids/le" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <end_of_request> element allows to have arrays in the request. For configuring an array, the
request is split into as many packages as the size of the array. The last telegram contains all tags,

including the <end_of_request> flag, while all other telegrams contain one array element each.

As an example, for requesting two load carrier models to the rc_load_carrier_db’s get_load_carriers
service, the user needs to send two XML messages. The first XML telegram is:

<req>
<args>

<load_carrier_ids>
<le>load_carrier1</le>

</load_carrier_ids>
</args>

</req>

This telegram can be sent from KRL with the EKI_Send command, by specifying the list element as path:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/
→˓le", "load_carrier1")
RET = EKI_Send("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/le")

The second telegram includes all tags and triggers the request to the rc_load_carrier_db node:

<req>
<node>

(continues on next page)

Roboception GmbH

Manual: rc_cube

323 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.4. KUKA Ethernet KRL Interface

(continued from previous page)

<rc_load_carrier_db></rc_load_carrier_db>
</node>
<service>

<get_load_carriers></get_load_carriers>
</service>
<args>

<load_carrier_ids>
<le>load_carrier2</le>

</load_carrier_ids>
</args>
<end_of_request></end_of_request>

</req>

This telegram can be sent from KRL by specifying req as path for EKI_Send:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/
→˓le", "load_carrier2")
RET = EKI_Send("rc_load_carrier_db-get_load_carriers", "req")

7.4.3.2 Response XML structure

The <RECEIVE> element in the XML configuration file for a generic service follows the specification below:

<RECEIVE>
<XML>

<ELEMENT Tag="res/<resX>" Type="<resX_type>"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

As an example, the <RECEIVE> element of the rc_april_tag_detect’s detect service (see TagDetect,
Section 6.2.2) is:

<RECEIVE>
<XML>

<ELEMENT Tag="res/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose_frame" Type="STRING"/>
<ELEMENT Tag="res/tags/le/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/tags/le/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose/@X" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Y" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Z" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@A" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@B" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@C" Type="REAL"/>
<ELEMENT Tag="res/tags/le/instance_id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/size" Type="REAL"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

For arrays, the response includes multiple instances of the same XML element. Each element is written

into a separate buffer within EKI and can be read from the buffer with KRL instructions. The number

Roboception GmbH

Manual: rc_cube

324 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.4. KUKA Ethernet KRL Interface

of instances can be requested with EKI_CheckBuffer and each instance can then be read by calling
EKI_Get<Type>.

As an example, the tag poses received after a call to the rc_april_tag_detect’s detect service can be
read in KRL using the following code:

DECL EKI_STATUS RET
DECL INT i
DECL INT num_instances
DECL FRAME poses[32]

DECL FRAME pose = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

RET = EKI_CheckBuffer("rc_april_tag_detect-detect", "res/tags/le/pose")
num_instances = RET.Buff
for i=1 to num_instances

RET = EKI_GetFrame("rc_april_tag_detect-detect", "res/tags/le/pose", pose)
poses[i] = pose

endfor
RET = EKI_ClearBuffer("rc_april_tag_detect-detect", "res")

Note: Before each request from EKI to the rc_cube, all buffers should be cleared in order to store
only the current response in the EKI buffers.

7.4.4 Parameters

All nodes’ parameters can be set and queried from the EKI Bridge. The XML configuration file for a

generic node follows the specification below:

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="req/parameters/<parameter_y>/@value" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>
<RECEIVE>

<XML>
<ELEMENT Tag="res/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@default" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@min" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@max" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@value" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@default" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@min" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@max" Type="REAL"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

The request is interpreted as a get request if all parameter’s value attributes are empty. If any value
attribute is non-empty, it is interpreted as set request of the non-empty parameters.
As an example, the current value of all parameters of rc_stereomatching can be queried using the XML
telegram:

Roboception GmbH

Manual: rc_cube

325 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.4. KUKA Ethernet KRL Interface

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters></parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:

DECL EKI_STATUS RET
RET = EKI_Send("rc_stereomatching-parameters", "req")

The response from the EKI Bridge contains all parameters:

<res>
<parameters>

<acquisition_mode default="Continuous" max="" min="" value="Continuous"/>
<quality default="High" max="" min="" value="High"/>
<static_scene default="0" max="1" min="0" value="0"/>
<seg default="200" max="4000" min="0" value="200"/>
<smooth default="1" max="1" min="0" value="1"/>
<fill default="3" max="4" min="0" value="3"/>
<minconf default="0.5" max="1.0" min="0.5" value="0.5"/>
<mindepth default="0.1" max="100.0" min="0.1" value="0.1"/>
<maxdepth default="100.0" max="100.0" min="0.1" value="100.0"/>
<maxdeptherr default="100.0" max="100.0" min="0.01" value="100.0"/>

</parameters>
<return_code message="" value="0"/>

</res>

The quality parameter of rc_stereomatching can be set to Low by the XML telegram:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters>

<quality value="Low"></quality>
</parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_stereomatching-parameters", "req/parameters/quality/@value",
→˓"Low")
RET = EKI_Send("rc_stereomatching-parameters", "req")

In this case, only the applied value of quality is returned by the EKI Bridge:

<res>
<parameters>

<quality default="High" max="" min="" value="Low"/>
</parameters>
<return_code message="" value="0"/>

</res>

Roboception GmbH

Manual: rc_cube

326 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.5. gRPC image stream interface

7.4.5 Migration to firmware version 22.01

From firmware version 22.01 on the EKI Bridge reflects rc_cube’s REST-API v2 (Section 7.3).
This requires the following changes:

• Configuring load carriers, grippers and regions of interest is now only accessible in the global

database modules:

– Use the rc_load_carrier_db XML files for getting, setting and deleting of load carriers.

– Use the rc_gripper_db XML files for getting, setting and deleting of grippers.

– Use the rc_roi_db XML files for getting, setting and deleting of regions of interest.

• Load carrier detection and filling level detection is now only accessible via the rc_load_carrier
node.

– Use the rc_load_carrier XML files for detect_load_carriers and detect_filling_level
services.

7.4.6 Example applications

More detailed robot application examples can be found at https://github.com/roboception/eki_

examples.

7.4.7 Troubleshooting

SmartPad error message: Limit of element memory reached

This error may occur if the number of matches exceeds the memory limit.

• Increase BUFFERING and set BUFFSIZE in EKI config files. Adapt these settings to your particular

KRC.

• Decrease the ‘Maximum Matches’ parameter in the detection module

• Even if the total memory limit (BUFFSIZE) of a message is not reached, the KRC might not be able

to parse the number of child elements in the XML tree if the BUFFERING limit is too small. For

example, if your application proposes 50 different grasps, the BUFFERING limit needs to be 50

too.

7.5 gRPC image stream interface

The gRPC image streaming interface can be used as an alternative to the GigE Vision / GenICam interface
(Section 7.2) for getting camera images and synchronized sets of images (e.g. left camera image and

corresponding disparity image). gRPC is a remote procedure call system that also supports streaming.

It uses Protocol Buffers (see https://developers.google.com/protocol-buffers/) as interface description

language and data serialization. For a gRPC introduction andmore details please see the official website

(https://grpc.io/).

The advantages of the gRPC interface in comparison to GigE Vision are:

• It is simpler to use in own programs than GigE Vision.

• There is gRPC support for a lot of programming languages (see https://grpc.io/).

• The communication is based on TCP instead of UDP and therefore it also works over less stable

networks, e.g. WLAN.

The disadvantages of the gRPC interface in comparison to GigE Vision are:

Roboception GmbH

Manual: rc_cube

327 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://github.com/roboception/eki_examples
https://github.com/roboception/eki_examples
https://grpc.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://grpc.io/
https://grpc.io/

7.5. gRPC image stream interface

• It does not support changing parameters, but the REST-API interface (Section 7.3) can be used for
changing parameters.

• It is not a standard vision interface like GigE Vision.

The rc_cube provides synchronized image sets via gRPC server side streams on a separate port for each
pipeline. The port is 50051 + pipeline number, so 50051 for pipeline 0, 50052 for pipeline 1, etc.

The communication is started by sending an ImageSetRequestmessage to the server. Themessage con-
tains the information about requested images, i.e. left, right, disparity, confidence and disparity_error

images can be enabled separately.

After getting the request, the server starts continuously sending ImageSet messages that contain all
requested images with all parameters necessary for interpreting the images. The images that are con-

tained in an ImageSet message are synchronized, i.e. they are all captured at the same time. The only
exception to this rule is if the out1_mode (Section 6.3.4.1) is set to AlternateExposureActive. In this
case, the camera and disparity images are taken 40 ms apart, so that the GPIO Out1 is LOW when the

left and right images are taken, and HIGH for the disparity, confidence and error images. This mode

is useful when a random dot projector is used, because the projector would be off for capturing the

left and right image, and on for the disparity image, which results in undisturbed camera images and a

much denser and more accurate disparity image.

Streaming of images is done until the client closes the connection.

7.5.1 gRPC service definition

syntax = "proto3";

message Time
{

int32 sec = 1; ///< Seconds
int32 nsec = 2; ///< Nanoseconds

}

message Gpios
{

uint32 inputs = 1; ///< bitmask of available inputs
uint32 outputs = 2; ///< bitmask of available outputs
uint32 values = 3; ///< bitmask of GPIO values

}

message Image
{

Time timestamp = 1; ///< Acquisition timestamp of the image
uint32 height = 2; ///< image height (number of rows)
uint32 width = 3; ///< image width (number of columns)
float focal_length = 4; ///< focal length in pixels
float principal_point_u = 5; ///< horizontal position of the principal point
float principal_point_v = 6; ///< vertical position of the principal point
string encoding = 7; ///< Encoding of pixels ["mono8", "mono16", "rgb8"]
bool is_bigendian = 8; ///< is data bigendian, (in our case false)
uint32 step = 9; ///< full row length in bytes
bytes data = 10; ///< actual matrix data, size is (step * height)
Gpios gpios = 11; ///< GPIOs as of acquisition timestamp
float exposure_time = 12; ///< exposure time in seconds
float gain = 13; ///< gain factor in decibel
float noise = 14; ///< noise
float out1_reduction = 16; ///< Fraction of reduction (0.0 - 1.0) of exposure time for

→˓images with GPIO Out1=Low in exp_auto_mode=AdaptiveOut1
float brightness = 17; ///< Current brightness of the image as value between 0 and 1

}

(continues on next page)

Roboception GmbH

Manual: rc_cube

328 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.5. gRPC image stream interface

(continued from previous page)

message DisparityImage
{

Time timestamp = 1; ///< Acquisition timestamp of the image
float scale = 2; ///< scale factor
float offset = 3; ///< offset in pixels (in our case 0)
float invalid_data_value = 4; ///< value used to mark pixels as invalid (in our case 0)
float baseline = 5; ///< baseline in meters
float delta_d = 6; ///< Smallest allowed disparity increment. The smallest

→˓achievable depth range resolution is delta_Z = (Z^2/image.focal_length*baseline)*delta_d.
Image image = 7; ///< disparity image

}

message Mesh
{

Time timestamp = 1; ///< Acquisition timestamp of disparity image from which the mesh
→˓is computed
string format = 2; ///< currently only "ply" is supported
bytes data = 3; ///< actual mesh data

}

message ImageSet
{

Time timestamp = 1;
Image left = 2;
Image right = 3;
DisparityImage disparity = 4;
Image disparity_error = 5;
Image confidence = 6;
Mesh mesh = 7;

}

message MeshOptions
{

uint32 max_points = 1; ///< limit maximum number of points, zero means default (up
→˓to 3.1MP), minimum is 1000
enum BinningMethod {

AVERAGE = 0; ///< average over all points in bin
MIN_DEPTH = 1; ///< use point with minimum depth (i.e. closest to camera) in

→˓bin
}
BinningMethod binning_method = 2; ///< method used for binning if limited by max_points
bool watertight = 3; ///< connect all edges and fill all holes, e.g. for collision

→˓checking
bool textured = 4; ///< add texture information to mesh

}

message ImageSetRequest
{

bool left_enabled = 1;
bool right_enabled = 2;
bool disparity_enabled = 3;
bool disparity_error_enabled = 4;
bool confidence_enabled = 5;
bool mesh_enabled = 6;
MeshOptions mesh_options = 7;
bool color = 8; ///< send left/right image as color (rgb8) images

}

service ImageInterface
{

// A server-to-client streaming RPC.

(continues on next page)

Roboception GmbH

Manual: rc_cube

329 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

7.6. OPC UA interface

(continued from previous page)

rpc StreamImageSets(ImageSetRequest) returns (stream ImageSet) {}
}

7.5.2 Image stream conversions

The conversion of disparity images into a point cloud can be done as described in the GigE Vision /GenICam interface (Section 7.2.7).

7.5.3 Example client

A simple example C++ client can be found at https://github.com/roboception/grpc_image_client_

example.

7.6 OPC UA interface

The rc_cube also offers an optional OPC UA interface. The OPC UA server can be activated via license
update.

The OPC UA server uses the DataTypeDefinition attribute (available in OPC UA version 1.04) for cus-
tom datatypes and also uses methods and variable length arrays. Please check if your OPC UA client

supports this.

Please contact support@roboception.de if you are interested in using the OPC UA server.

7.7 Time synchronization

The rc_cube provides timestamps with all images and messages. To compare these with the time on the
application host, the time needs to be properly synchronized.

The time synchronization between the rc_cube and the application host can be done via the Network
Time Protocol (NTP), which is activated by default.

Internal time synchronization between the rc_cube and the connected camera is automatically done via
the Precision Time Protocol (PTP).

The current system time as well as time synchronization status can be queried via REST-API (Section 7.3)
and seen on the Web GUI’s (Section 7.1) System page.
Note: Depending on the reachability of NTP servers or PTP masters it might take up to several min-

utes until the time is synchronized.

7.7.1 NTP

The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network. A client

periodically requests the current time from a server, and uses it to set and correct its own clock.

By default the rc_cube tries to reach NTP servers from the NTP Pool Project, which will work if the rc_cube
has access to the internet.

If the rc_cube is configured for DHCP (Section 3.4.2) (which is the default setting), it will also request NTP
servers from the DHCP server and try to use those.

Roboception GmbH

Manual: rc_cube

330 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://github.com/roboception/grpc_image_client_example
https://github.com/roboception/grpc_image_client_example
mailto:support@roboception.de

7.7. Time synchronization

7.7.2 PTP

The Precision Time Protocol (PTP, also known as IEEE1588) is a protocol which offers more precise and

robust clock synchronization than with NTP.

Note: Currently, time synchronization between the application host and the rc_cube is not imple-
mented. Please use NTP instead.

7.7.3 Setting time manually

The rc_cube allows to set the current date and time manually using the REST-API’s /system/time end-
point, if no time synchronization is active (see System and logs, Section 7.3.3.4). A more convenient way
is setting the system time on the Web GUI’s (Section 7.1) System page.

Roboception GmbH

Manual: rc_cube

331 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

8 UserSpace

The UserSpace enables users to deploy and manage containers running on the rc_cube. Standalone
containers and docker-compose stacks are supported.

Note: Familiarity with Docker containers is required.

If available and enabled, the UserSpace can be accessed in theWeb GUI (Section 7.1) in the menu underUserSpace. This page shows the running apps and containers with their current state and health, in case
a health-check is available. Each container lists the published ports. If their protocol is http or https,

these containers can be accessed directly in the Web GUI.

8.1 Configuration

Note: The UserSpace is not enabled by default and can only be enabled/disabled or reset via a locally

connected screen for security reasons.

Please connect a monitor, keyboard, and mouse to the rc_cube and then boot the rc_cube.

8.1.1 Enable UserSpace

The UserSpace can be enabled in two steps:

1. Navigate to the pane UserSpace configuration and click enable UserSpace.
2. If the UserSpace is enabled for the first time, a user for the portainer UI needs to be created: Click

on the portainer pane, and register a user account for the administrator. It is required to complete
this step within five minutes after clicking enable UserSpace.

8.1.2 Disable UserSpace

The UserSpace can also be disabled. To disable the UserSpace, navigate to the pane UserSpace config-uration and click disable UserSpace. Disabling will stop all running containers and the portainer UI, but
not delete existing container images and their configurations. The UserSpace can be enabled again at

any time.

8.1.3 Reset UserSpace

The UserSpace can also be reset. To reset the UserSpace, navigate to the pane UserSpace configuration
click Reset UserSpace and answer the security question. Resetting will delete all containers, volumes, and
the portainer configuration, including secrets and users.

Roboception GmbH

Manual: rc_cube

332 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

8.2. Network access to UserSpace applications

8.2 Network access to UserSpace applications

To access containers via network, the container ports need to be published to host ports.

UserSpace information including running apps and their published ports can be queried via REST-APIuserspace endpoint, (Section 7.3.3.3) or viewed in theWeb GUI (Section 7.1) in the menu under UserSpace.
All ports that are published to the host are listed with their protocol (UDP or TCP). To explicitly specify a

protocol (e.g. http or https) for app ports use container labels:

• com.roboception.app.http: all exposed TCP ports use http

• com.roboception.app.https.port=1234,5678: comma separated list with https ports

8.3 Examples

Two examples can be found under App Templates inside the UserSpace pane:
• hello_rc_cube: Single container exposing a web page with some information about itself. See also

https://github.com/roboception/hello_rc_cube.

• rc_cube_monitoring: Compose stack with Prometheus and Grafana to monitor the rc_cube. See
also https://github.com/roboception/rc_cube_monitoring.

Clicking Deploy the container/stack under Actions will pull the Docker images and start the app. The
running app containers can then be seen under Containers. The web page address is a combination of
the rc_cube’s IP address and the port listed under Published Ports.

8.4 Interfaces

Docker containers managed in the UserSpace can use the public interfaces of the rc_cube. In particular,
Docker containers can access synchronized image sets via gRPC (Section 7.5) and can call the REST-APIinterface (Section 7.3). The rc_cube (the host) can be accessed under the Docker bridge IP (in default
Docker bridge network 172.17.0.1).

8.5 Restrictions

Some restrictions for containers apply:

• Containers cannot be privileged.

• No access to the host network (a Docker bridge network is used instead).

• Only paths inside cloned git repositories with a docker-compose stack can be mounted, all other

host paths cannot be mounted.

• Host devices cannot be accessed. This includes e.g. USB and GPU devices.

• Well known and internally used ports on the host cannot be bound. This includes ports below

1024, ports from 4200 to 4299 and the ports 2342, 2343, 2344, 2345, 3956, 4840, 5353, 6379,

7000, 7001, 7002, 7003, 9100, 9118, 9256, 9445, 9446, 11311, 22350, 22352, 50010, 50051, 50052,

50053 and 50054.

Roboception GmbH

Manual: rc_cube

333 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://github.com/roboception/hello_rc_cube
https://github.com/roboception/rc_cube_monitoring

9 Maintenance

9.1 Creating and restoring backups of settings

The rc_cube offers the possibility to download the current settings as backup or for transferring them to
a different rc_visard or rc_cube.
The current settings of the rc_cube can be downloaded on theWeb GUI’s (Section 7.1) System page in therc_cube Settings section. They can also be downloaded via the rc_cube’s REST-API interface (Section 7.3)
using the GET /system/backup request.

For downloading a backup, the user can choose which settings to include:

• nodes: the settings of all modules (parameters, preferred orientations and sorting strategies)

• load_carriers: the configured load carriers

• regions_of_interest: the configured 2D and 3D regions of interest

• grippers: the configured grippers (without the CAD elements)

The returned backup should be stored as a .json file.

The templates of the SilhouetteMatch and CADMatch modules are not included in the backup but can

be downloaded manually using the REST-API or the Web GUI (see Template API, Section 6.2.4.14 andTemplate API, Section 6.2.5.13).
A backup can be restored to the rc_cube on theWeb GUI’s (Section 7.1) System page in the rc_cube Settings
section by uploading the backup .json file. In theWeb GUI the settings included in the backup are shown
and can be chosen for restore. The corresponding REST-API interface (Section 7.3) call is POST /system/
backup.

Warning: When restoring load carriers, all existing load carriers on the rc_cube will get lost and will
be replaced by the content of the backup. The same applies to restoring grippers and regions of

interest.

When restoring a backup, only the settings which are applicable to the rc_cube are restored. Parameters
for modules that do not exist on the device or do not have a valid license will be skipped. If a backup

can only be restored partially, the user will be notified by warnings.

9.2 Updating the firmware

Information about the current firmware image version can be found on the Web GUI’s (Section 7.1)System → Firmware & License page. It can also be accessed via the rc_cube’s REST-API interface (Section
7.3) using the GET /system request. Users can use either the Web GUI or the REST-API to update the
firmware.

Roboception GmbH

Manual: rc_cube

334 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

9.2. Updating the firmware

Warning: When upgrading from a version prior to 21.07, all of the software modules’ configured

parameters will be reset to their defaults after a firmware update. Only when upgrading from version

21.07 or higher, the last saved parameters will be preserved. Please make sure these settings are

persisted on the application-side or client PC (e.g., using the REST-API interface, Section 7.3) to request
all parameters and store them prior to executing the update.

The following settings are excluded from this and will be persisted across a firmware update:

• the rc_cube’s network configuration including an optional static IP address and the user-

specified device name,

• the latest result of the Hand-eye calibration (Section 6.3.1), i.e., recalibrating the rc_cube w.r.t. a
robot is not required, unless camera mounting has changed, and

Step 1: Download the newest firmware version. Firmware updates will be supplied from of a

Mender artifact file identified by its .mender suffix.

If a new firmware update is available for your rc_cube device, the respective file can be downloaded
to a local computer from https://www.roboception.com/download.

Step 2: Upload the update file. To update with the rc_cube’s REST-API, users may refer to the POST /
system/update request.

To update the firmware via the Web GUI, locate the System→ Firmware & License page and press
the “Upload rc_cube Update” button. Select the desired update image file (file extension .mender)
from the local file system and open it to start the update.

Depending on the network architecture and configuration, the upload may take several minutes.

During the update via the Web GUI, a progress bar indicates the progress of the upload.

Note: Depending on the web browser, the update progress status shown in the progress bar

may indicate the completion of the update too early. Please wait until a notification window

opens, which indicates the end of the update process. Expect an overall update time of at least

five minutes.

Warning: Do not close the web browser tab which contains the Web GUI or press the renew

button on this tab, because it will abort the update procedure. In that case, repeat the update

procedure from the beginning.

Step 3: Reboot the rc_cube. To apply a firmware update to the rc_cube device, a reboot is required after
having uploaded the new image version.

Note: The new image version is uploaded to the inactive partition of the rc_cube. Only after
rebooting will the inactive partition be activated, and the active partition will become inactive.

If the updated firmware image cannot be loaded, this partition of the rc_cube remains inactive
and the previously installed firmware version from the active partition will be used automati-

cally.

As for the REST-API, the reboot can be performed by the PUT /system/reboot request.

After having uploaded the new firmware via the Web GUI, a notification window is opened, which

offers to reboot the device immediately or to postpone the reboot. To reboot the rc_cube at a later
time, use the Reboot button on the Web GUI’s System page.

Step 4: Confirm the firmware update. After rebooting the rc_cube, please check the firmware image
version number of the currently active image to make sure that the updated image was success-

fully loaded. You can do so either via the Web GUI’s System→ Firmware & License page or via the
REST-API’s GET /system/update request.

Please contact Roboception in case the firmware update could not be applied successfully.

Roboception GmbH

Manual: rc_cube

335 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

https://www.roboception.com/download

9.3. Restoring the previous firmware version

9.3 Restoring the previous firmware version

After a successful firmware update, the previous firmware image is stored on the inactive partition of

the rc_cube and can be restored in case needed. This procedure is called a rollback.
Note: Using the latest firmware as provided by Roboception is strongly recommended. Hence, roll-

back functionality should only be used in case of serious issues with the updated firmware version.

Rollback functionality is only accessible via the rc_cube’s REST-API interface (Section 7.3) using the PUT /
system/rollback request. It can be issued using any HTTP-compatible client or using a web browser
as described in Swagger UI (Section 7.3.5). Like the update process, the rollback requires a subsequent
device reboot to activate the restored firmware version.

9.4 Rebooting the rc_cube
An rc_cube reboot is necessary after updating the firmware or performing a software rollback. It can be
issued either programmatically, via the rc_cube’s REST-API interface (Section 7.3) using the PUT /system/
reboot request, or manually on the Web GUI’s (Section 7.1) System page.

9.5 Updating the software license

Licenses that are purchased from Roboception for enabling additional features can be installed via theWeb GUI’s (Section 7.1) System→ Firmware & License page. The rc_cube has to be rebooted to apply the
licenses.

Note: If a computer screen as well asmouse and keyboard are connected to the rc_cube, the software
license can also be updated directly at the rc_cube using the Web GUI and a separate USB flash drive
from which the new license file can be installed.

9.6 Downloading log files

During operation, the rc_cube logs important information, warnings, and errors into files. If the rc_cube
exhibits unexpected or erroneous behavior, the log files can be used to trace its origin. Log messages

can be viewed and filtered using the Web GUI’s (Section 7.1) System → Logs page. If contacting the

support (Contact, Section 11), the log files are very useful for tracking possible problems. To download
them as a .tar.gz file, click on Download all logs on the Web GUI’s System→ Logs page.
Aside from the Web GUI, the logs are also accessible via the rc_cube’s REST-API interface (Section 7.3)
using the GET /logs and GET /logs/{log} requests.

Note: If a computer screen as well as mouse and keyboard are connected to the rc_cube, the log files
can also be download directly from the rc_cube using the Web GUI and a separate USB flash drive on
which the log files can be stored.

Roboception GmbH

Manual: rc_cube

336 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

10 Troubleshooting

10.1 Camera-image issues

The camera image is too bright

• If the camera is in manual exposure mode, decrease the exposure time (see Parameters, Section
6.1.1.3), or

• switch to auto-exposure mode (see Parameters, Section 6.1.1.3).
The camera image is too dark

• If the camera is in manual exposure mode, increase the exposure time (see Parameters, Section
6.1.1.3), or

• switch to auto-exposure mode (see Parameters, Section 6.1.1.3).
The camera image is too noisy

Large gain factors cause high-amplitude image noise. To decrease the image noise,

• use an additional light source to increase the scene’s light intensity, or

• choose a greater maximal auto-exposure time (see Parameters, Section 6.1.1.3).
The camera image is out of focus

• Check whether the object is too close to the lens and increase the distance between the object

and the lens if it is.

• Check whether the camera lenses are dirty and clean them if they are.

• If none of the above applies, a severe hardware problem might exist. Please contact sup-port (Section 11).
The camera image is blurred

Fast motions in combination with long exposure times can cause blur. To reduce motion blur,

• decrease the motion speed of the camera,

• decrease the motion speed of objects in the field of view of the camera, or

• decrease the exposure time of the camera (see Parameters, Section 6.1.1.3).
The camera image frame rate is too low

• Increase the image frame rate as described in Parameters (Section 6.1.1.3).
• The maximal frame rate of the cameras is 25 Hz.

10.2 Depth/Disparity, error, and confidence image issues

All these guidelines also apply to error and confidence images, because they correspond directly to the

disparity image.

Roboception GmbH

Manual: rc_cube

337 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

10.2. Depth/Disparity, error, and confidence image issues

The disparity image is too sparse or empty

• Check whether the camera images are well exposed and sharp. Follow the instructions in Camera-image issues (Section 10.1) if applicable.
• Check whether the scene has enough texture (see Stereo matching, Section 6.1.2) and install an
external pattern projector if required.

• Decrease the Minimum Distance (Section 6.1.2.5).
• Increase the Maximum Distance (Section 6.1.2.5).
• Check whether the object is too close to the cameras. Consider the different depth ranges of the

camera variants.

• Decrease the Minimum Confidence (Section 6.1.2.5).
• Increase the Maximum Depth Error (Section 6.1.2.5).
• Choose a lesser Disparity Image Quality (Section 6.1.2.5). Lower resolution disparity images are
generally less sparse.

The disparity images’ frame rate is too low

• Check and increase the frame rate of the camera images (see Parameters, Section 6.1.1.3). The
frame rate of the disparity image cannot be greater than the frame rate of the camera images.

• Choose a lesser Disparity Image Quality (Section 6.1.2.5).
• Increase the Minimum Distance (Section 6.1.2.5) as much as possible for the application.

The disparity image does not show close objects

• Check whether the object is too close to the cameras. Consider the depth ranges of the camera

variants.

• Decrease the Minimum Distance (Section 6.1.2.5).
The disparity image does not show distant objects

• Increase the Maximum Distance (Section 6.1.2.5).
• Increase the Maximum Depth Error (Section 6.1.2.5).
• Decrease the Minimum Confidence (Section 6.1.2.5).

The disparity image is too noisy

• Increase the Segmentation value (Section 6.1.2.5).
• Increase the Fill-In value (Section 6.1.2.5).

The disparity values or the resulting depth values are too inaccurate

• Decrease the distance between the camera and the scene. Depth-measurement error grows

quadratically with the distance from the cameras.

• Check whether the scene contains repetitive patterns and remove them if it does. They could

cause wrong disparity measurements.

The disparity image is too smooth

• Decrease the Fill-In value (Section 6.1.2.5).
The disparity image does not show small structures

• Decrease the Segmentation value (Section 6.1.2.5).
• Decrease the Fill-In value (Section 6.1.2.5).

Roboception GmbH

Manual: rc_cube

338 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

10.3. GigE Vision/GenICam issues

10.3 GigE Vision/GenICam issues

No images

• Check that the modules are enabled. See ComponentSelector and ComponentEnable in ImportantGenICam parameters (Section 7.2.2).

Roboception GmbH

Manual: rc_cube

339 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

11 Contact

11.1 Support

For support issues, please see http://www.roboception.com/support or contact sup-

port@roboception.de.

11.2 Downloads

Software SDKs, etc. can be downloaded from http://www.roboception.com/download.

11.3 Address

Roboception GmbH

Kaflerstrasse 2

81241 Munich

Germany

Web: http://www.roboception.com

Email: info@roboception.de

Phone: +49 89 889 50 79-0

Roboception GmbH

Manual: rc_cube

340 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

http://www.roboception.com/support
mailto:support@roboception.de
mailto:support@roboception.de
http://www.roboception.com/download
http://www.roboception.com
mailto:info@roboception.de

12 Appendix

12.1 Pose formats

A pose consists of a translation and rotation. The translation defines the shift along the 𝑥, 𝑦 and 𝑧 axes.
The rotation can be defined in many different ways. The rc_cube uses quaternions to define rotations
and translations are given in meters. This is called the XYZ+quaternion format. This chapter explains

the conversion between different common conventions and the XYZ+quaternion format.

It is quite common to define rotations in 3D by three angles that define rotations around the three

coordinate axes. Unfortunately, there are many different ways to do that. The most common conven-

tions are Euler and Cardan angles (also called Tait-Bryan angles). In both conventions, the rotations can

be applied to the previously rotated axis (intrinsic rotation) or to the axis of a fixed coordinate system

(extrinsic rotation).

We use 𝑥, 𝑦 and 𝑧 to denote the three coordinate axes. 𝑥′
, 𝑦′ and 𝑧′ refer to the axes that have been

rotated one time. Similarly, 𝑥′′
, 𝑦′′ and 𝑧′′ are the axes after two rotations.

In the (original) Euler angle convention, the first and the third axis are always the same. The rotation or-

der 𝑧-𝑥′
-𝑧′′ means rotating around the 𝑧-axis, then around the already rotated 𝑥-axis and finally around

the (two times) rotated 𝑧-axis. In the Cardan angle convention, three different rotation axes are used,
e.g. 𝑧-𝑦′-𝑥′′

. Cardan angles are often also just called Euler angles.

For each intrinsic rotation order, there is an equivalent extrinsic rotation order, which is inverted, e.g.

the intrinsic rotation order 𝑧-𝑦′-𝑥′′
is equivalent to the extrinsic rotation order 𝑥-𝑦-𝑧.

Rotations around the 𝑥, 𝑦 and 𝑧 axes can be defined by quaternions as

𝑟𝑥(𝛼) =

⎛⎜⎜⎝
sin 𝛼

2
0
0

cos 𝛼
2

⎞⎟⎟⎠ , 𝑟𝑦(𝛽) =

⎛⎜⎜⎝
0

sin 𝛽
2

0

cos 𝛽
2

⎞⎟⎟⎠ , 𝑟𝑧(𝛾) =

⎛⎜⎜⎝
0
0

sin 𝛾
2

cos 𝛾
2

⎞⎟⎟⎠ ,
or by rotation matrices as

𝑟𝑥(𝛼) =

⎛⎝ 1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

⎞⎠ ,
𝑟𝑦(𝛽) =

⎛⎝ cos𝛽 0 sin𝛽
0 1 0

− sin𝛽 0 cos𝛽

⎞⎠ ,
𝑟𝑧(𝛾) =

⎛⎝ cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎞⎠ .
The extrinsic rotation order 𝑥-𝑦-𝑧 can be computed by multiplying the individual rotations in inverse
order, i.e. 𝑟𝑧(𝛾)𝑟𝑦(𝛽)𝑟𝑥(𝛼).

Based on these definitions, the following sections explain the conversion between common conventions

and the XYZ+quaternion format.

Roboception GmbH

Manual: rc_cube

341 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

12.1. Pose formats

Note: Please be aware of units for positions and orientations. rc_cube devices always specify po-
sitions in meters, while most robot manufacturers use millimeters or inches. Angles are typically

specified in degrees, but may sometimes also be given in radians.

12.1.1 Rotation matrix and translation vector

A pose can also be defined by a rotation matrix 𝑅 and a translation vector 𝑇 .

𝑅 =

⎛⎝ 𝑟00 𝑟01 𝑟02
𝑟10 𝑟11 𝑟12
𝑟20 𝑟21 𝑟22

⎞⎠ , 𝑇 =

⎛⎝ 𝑋
𝑌
𝑍

⎞⎠ .

The pose transformation can be applied to a point 𝑃 by

𝑃 ′ = 𝑅𝑃 + 𝑇.

12.1.1.1 Conversion from rotation matrix to quaternion

The conversion from a rotation matrix (with 𝑑𝑒𝑡(𝑅) = 1) to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be
done as follows.

𝑥 = sign(𝑟21 − 𝑟12)
1

2

√︀
max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀
max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀
max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑤 =
1

2

√︀
max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

The sign operator returns -1 if the argument is negative. Otherwise, 1 is returned. It is used to recover

the sign for the square root. The max function ensures that the argument of the square root function is

not negative, which can happen in practice due to round-off errors.

12.1.1.2 Conversion from quaternion to rotation matrix

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to a rotation matrix can be done
as follows.

𝑅 = 2

⎛⎝ 1
2 − 𝑦2 − 𝑧2 𝑥𝑦 − 𝑧𝑤 𝑥𝑧 + 𝑦𝑤
𝑥𝑦 + 𝑧𝑤 1

2 − 𝑥2 − 𝑧2 𝑦𝑧 − 𝑥𝑤
𝑥𝑧 − 𝑦𝑤 𝑦𝑧 + 𝑥𝑤 1

2 − 𝑥2 − 𝑦2

⎞⎠

12.1.2 ABB pose format

ABB robots use a position and a quaternion for describing a pose, like rc_cube devices. There is no
conversion of the orientation needed.

12.1.3 FANUC XYZ-WPR format

The pose format that is used by FANUC robots consists of a position 𝑋𝑌 𝑍 in millimeters and an orien-
tation𝑊𝑃𝑅 that is given by three angles in degrees, with𝑊 rotating around 𝑥-axis, 𝑃 rotating around
𝑦-axis and 𝑅 rotating around 𝑧-axis. The rotation order is 𝑥-𝑦-𝑧 and computed by 𝑟𝑧(𝑅)𝑟𝑦(𝑃)𝑟𝑥(𝑊).

Roboception GmbH

Manual: rc_cube

342 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

12.1. Pose formats

12.1.3.1 Conversion from FANUC-WPR to quaternion

The conversion from the𝑊𝑃𝑅 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝑊𝑟 = 𝑊
𝜋

180
,

𝑃𝑟 = 𝑃
𝜋

180
,

𝑅𝑟 = 𝑅
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2)− sin (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2),

𝑦 = cos (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2),

𝑧 = sin (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2)− cos (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2),

𝑤 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2).

12.1.3.2 Conversion from quaternion to FANUC-WPR

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the𝑊𝑃𝑅 angles in degrees can
be done as follows.

𝑅 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

𝑃 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑊 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

12.1.4 Franka Emika Pose Format

Franka Emika robots use a transformation matrix 𝑇 to define a pose. A transformation matrix combines
a rotation matrix 𝑅 and a translation vector 𝑡 = (𝑥 𝑦 𝑧)𝑇 .

𝑇 =

⎛⎜⎜⎝
𝑟00 𝑟01 𝑟02 𝑥
𝑟10 𝑟11 𝑟12 𝑦
𝑟20 𝑟21 𝑟22 𝑧
0 0 0 1

⎞⎟⎟⎠
The pose given by Franka Emika’s “Measure Pose” App consists of a translation 𝑥, 𝑦, 𝑧 in millimeters
and a rotation 𝑥, 𝑦, 𝑧 in degrees. The rotation convention is 𝑧-𝑦′-𝑥′′

(i.e. 𝑥-𝑦-𝑧) and is computed by
𝑟𝑧(𝑧)𝑟𝑦(𝑦)𝑟𝑥(𝑥).

12.1.4.1 Conversion from transformation matrix to quaternion

The conversion from a rotation matrix (with 𝑑𝑒𝑡(𝑅) = 1) to a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) can be
done as follows:

𝑞𝑥 = sign(𝑟21 − 𝑟12)
1

2

√︀
max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑞𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀
max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑞𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀
max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑞𝑤 =
1

2

√︀
max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

Roboception GmbH

Manual: rc_cube

343 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

12.1. Pose formats

The sign operator returns -1 if the argument is negative. Otherwise, 1 is returned. It is used to recover

the sign for the square root. The max function ensures that the argument of the square root function is

not negative, which can happen in practice due to round-off errors.

12.1.4.2 Conversion from Rotation-XYZ to quaternion

The conversion from the 𝑥, 𝑦, 𝑧 angles in degrees to a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) can be done
by first converting all angles to radians

𝑋𝑟 = 𝑥
𝜋

180
,

𝑌𝑟 = 𝑦
𝜋

180
,

𝑍𝑟 = 𝑧
𝜋

180
,

and then calculating the quaternion with

𝑞𝑥 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2)− sin (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2),

𝑞𝑦 = cos (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2),

𝑞𝑧 = sin (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2)− cos (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2),

𝑞𝑤 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2).

12.1.4.3 Conversion from quaternion and translation to transformation

The conversion from a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) and a translation vector 𝑡 = (𝑥 𝑦 𝑧)𝑇

to a transformation matrix 𝑇 can be done as follows:

𝑇 =

⎛⎜⎜⎝
1− 2𝑠(𝑞2𝑦 + 𝑞2𝑧) 2𝑠(𝑞𝑥𝑞𝑦 − 𝑞𝑧𝑞𝑤) 2𝑠(𝑞𝑥𝑞𝑧 + 𝑞𝑦𝑞𝑤) 𝑥
2𝑠(𝑞𝑥𝑞𝑦 + 𝑞𝑧𝑞𝑤) 1− 2𝑠(𝑞2𝑥 + 𝑞2𝑧) 2𝑠(𝑞𝑦𝑞𝑧 − 𝑞𝑥𝑞𝑤) 𝑦
2𝑠(𝑞𝑥𝑞𝑧 − 𝑞𝑦𝑞𝑤) 2𝑠(𝑞𝑦𝑞𝑧 + 𝑞𝑥𝑞𝑤) 1− 2𝑠(𝑞2𝑥 + 𝑞2𝑦) 𝑧

0 0 0 1

⎞⎟⎟⎠
where 𝑠 = ||𝑞||−2 = 1

𝑞2𝑥+𝑞2𝑦+𝑞2𝑧+𝑞2𝑤
and 𝑠 = 1 if 𝑞 is a unit quaternion.

12.1.4.4 Conversion from quaternion to Rotation-XYZ

The conversion from a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) with ||𝑞|| = 1 to the 𝑥, 𝑦, 𝑧 angles in degrees
can be done as follows.

𝑥 = atan2(2(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦), 1− 2(𝑞2𝑦 + 𝑞2𝑧))
180

𝜋

𝑦 = asin(2(𝑞𝑤𝑞𝑦 − 𝑞𝑧𝑞𝑥))
180

𝜋

𝑧 = atan2(2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧), 1− 2(𝑞2𝑥 + 𝑞2𝑦))
180

𝜋

12.1.4.5 Pose representation in RaceCommessages and state machines

In RaceCom messages and in state machines a pose is usually defined as one-dimensional array of 16

float values, representing the transformation matrix in column-major order. The indices of the matrix

entries below correspond to the array indices

𝑇 =

⎛⎜⎜⎝
𝑎0 𝑎4 𝑎8 𝑎12
𝑎1 𝑎5 𝑎9 𝑎13
𝑎2 𝑎6 𝑎10 𝑎14
𝑎3 𝑎7 𝑎11 𝑎15

⎞⎟⎟⎠
Roboception GmbH

Manual: rc_cube

344 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

12.1. Pose formats

12.1.5 Fruitcore HORST pose format

Fruitcore HORST robots use a position in meters and a quaternion with 𝑞0 = 𝑤, 𝑞1 = 𝑥, 𝑞2 = 𝑦 and
𝑞3 = 𝑧 for describing a pose, like rc_cube devices. There is no conversion needed.

12.1.6 Kawasaki XYZ-OAT format

The pose format that is used by Kawasaki robots consists of a position 𝑋𝑌 𝑍 in millimeters and an
orientation 𝑂𝐴𝑇 that is given by three angles in degrees, with 𝑂 rotating around 𝑧 axis, 𝐴 rotating
around the rotated 𝑦 axis and 𝑇 rotating around the rotated 𝑧 axis. The rotation convention is 𝑧-𝑦′-𝑧′′

(i.e. 𝑧-𝑦-𝑧) and computed by 𝑟𝑧(𝑂)𝑟𝑦(𝐴)𝑟𝑧(𝑇).

12.1.6.1 Conversion from Kawasaki-OAT to quaternion

The conversion from the 𝑂𝐴𝑇 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝑂𝑟 = 𝑂
𝜋

180
,

𝐴𝑟 = 𝐴
𝜋

180
,

𝑇𝑟 = 𝑇
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2)− sin (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2),

𝑦 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2) + sin (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2),

𝑧 = sin (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2) + cos (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2),

𝑤 = cos (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2)− sin (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2).

12.1.6.2 Conversion from quaternion to Kawasaki-OAT

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝑂𝐴𝑇 angles in degrees can
be done as follows.

If 𝑥 = 0 and 𝑦 = 0 the conversion is

𝑂 = atan2(2(𝑧 − 𝑤), 2(𝑧 + 𝑤))
180

𝜋

𝐴 = acos(𝑤2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑧 + 𝑤), 2(𝑤 − 𝑧))
180

𝜋

If 𝑧 = 0 and 𝑤 = 0 the conversion is

𝑂 = atan2(2(𝑦 − 𝑥), 2(𝑥+ 𝑦))
180

𝜋

𝐴 = acos(−1.0)
180

𝜋

𝑇 = atan2(2(𝑦 + 𝑥), 2(𝑦 − 𝑥))
180

𝜋

Roboception GmbH

Manual: rc_cube

345 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

12.1. Pose formats

In all other cases the conversion is

𝑂 = atan2(2(𝑦𝑧 − 𝑤𝑥), 2(𝑥𝑧 + 𝑤𝑦))
180

𝜋

𝐴 = acos(𝑤2 − 𝑥2 − 𝑦2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑦𝑧 + 𝑤𝑥), 2(𝑤𝑦 − 𝑥𝑧))
180

𝜋

12.1.7 KUKA XYZ-ABC format

KUKA robots use the so called XYZ-ABC format. 𝑋𝑌 𝑍 is the position in millimeters. 𝐴𝐵𝐶 are angles
in degrees, with 𝐴 rotating around 𝑧 axis, 𝐵 rotating around 𝑦 axis and 𝐶 rotating around 𝑥 axis. The
rotation convention is 𝑧-𝑦′-𝑥′′

(i.e. 𝑥-𝑦-𝑧) and computed by 𝑟𝑧(𝐴)𝑟𝑦(𝐵)𝑟𝑥(𝐶).

12.1.7.1 Conversion from KUKA-ABC to quaternion

The conversion from the 𝐴𝐵𝐶 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝐴𝑟 = 𝐴
𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2)− sin (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2),

𝑦 = cos (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2),

𝑧 = sin (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2)− cos (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2),

𝑤 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2).

12.1.7.2 Conversion from quaternion to KUKA-ABC

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝐴𝐵𝐶 angles in degrees can
be done as follows.

𝐴 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

12.1.8 Mitsubishi XYZ-ABC format

The pose format that is used by Mitsubishi robots is the same as that for KUKA robots (see KUKA XYZ-ABCformat, Section 12.1.7), except that 𝐴 is a rotation around 𝑥 axis and 𝐶 is a rotation around 𝑧 axis. Thus,
the rotation is computed by 𝑟𝑧(𝐶)𝑟𝑦(𝐵)𝑟𝑥(𝐴).

Roboception GmbH

Manual: rc_cube

346 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

12.1. Pose formats

12.1.8.1 Conversion from Mitsubishi-ABC to quaternion

The conversion from the 𝐴𝐵𝐶 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝐴𝑟 = 𝐴
𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2)− sin (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2),

𝑦 = cos (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2),

𝑧 = sin (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2)− cos (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2),

𝑤 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2).

12.1.8.2 Conversion from quaternion to Mitsubishi-ABC

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝐴𝐵𝐶 angles in degrees can
be done as follows.

𝐴 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

12.1.9 Universal Robots pose format

The pose format that is used by Universal Robots consists of a position 𝑋𝑌 𝑍 in millimeters and an
orientation in angle-axis format 𝑉 = (𝑅𝑋 𝑅𝑌 𝑅𝑍)𝑇 . The rotation angle 𝜃 in radians is the length
of the rotation axis 𝑈 .

𝑉 =

⎛⎝ 𝑅𝑋
𝑅𝑌
𝑅𝑍

⎞⎠ =

⎛⎝ 𝜃𝑢𝑥

𝜃𝑢𝑦

𝜃𝑢𝑧

⎞⎠
𝑉 is called a rotation vector.

12.1.9.1 Conversion from angle-axis format to quaternion

The conversion from a rotation vector 𝑉 to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done as follows.

We first recover the angle 𝜃 in radians from the rotation vector 𝑉 by

𝜃 =
√︀
𝑅𝑋2 +𝑅𝑌 2 +𝑅𝑍2.

Roboception GmbH

Manual: rc_cube

347 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

12.1. Pose formats

If 𝜃 = 0, then the quaternion is 𝑞 = (0 0 0 1), otherwise it is

𝑥 = 𝑅𝑋
sin(𝜃/2)

𝜃
,

𝑦 = 𝑅𝑌
sin(𝜃/2)

𝜃
,

𝑧 = 𝑅𝑍
sin(𝜃/2)

𝜃
,

𝑤 = cos(𝜃/2).

12.1.9.2 Conversion from quaternion to angle-axis format

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to a rotation vector in angle-axis
form can be done as follows.

We first recover the angle 𝜃 in radians from the quaternion by

𝜃 = 2 · acos(𝑤).

If 𝜃 = 0, then the rotation vector is 𝑉 = (0 0 0)𝑇 , otherwise it is

𝑅𝑋 = 𝜃
𝑥√

1− 𝑤2
,

𝑅𝑌 = 𝜃
𝑦√

1− 𝑤2
,

𝑅𝑍 = 𝜃
𝑧√

1− 𝑤2
.

12.1.10 Yaskawa Pose Format

The pose format that is used by Yaskawa robots consists of a position 𝑋𝑌 𝑍 in millimeters and an
orientation that is given by three angles in degrees, with 𝑅𝑥 rotating around 𝑥-axis, 𝑅𝑦 rotating around
𝑦-axis and𝑅𝑧 rotating around 𝑧-axis. The rotation order is 𝑥-𝑦-𝑧 and computed by 𝑟𝑧(𝑅𝑧)𝑟𝑦(𝑅𝑦)𝑟𝑥(𝑅𝑥).

12.1.10.1 Conversion from Yaskawa Rx, Ry, Rz to quaternion

The conversion from the𝑅𝑥,𝑅𝑦,𝑅𝑧 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done
by first converting all angles to radians

𝑋𝑟 = 𝑅𝑥
𝜋

180
,

𝑌𝑟 = 𝑅𝑦
𝜋

180
,

𝑍𝑟 = 𝑅𝑧
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2)− sin (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2),

𝑦 = cos (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2),

𝑧 = sin (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2)− cos (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2),

𝑤 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2).

Roboception GmbH

Manual: rc_cube

348 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

12.1. Pose formats

12.1.10.2 Conversion from quaternion to Yaskawa Rx, Ry, Rz

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)with ||𝑞|| = 1 to the𝑅𝑥,𝑅𝑦,𝑅𝑧 angles in degrees
can be done as follows.

𝑅𝑥 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

𝑅𝑦 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑅𝑧 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

Roboception GmbH

Manual: rc_cube

349 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

HTTP Routing Table

HTTP Routing Table

/cad

GET /cad/gripper_elements, 250
GET /cad/gripper_elements/{id}, 251
PUT /cad/gripper_elements/{id}, 251
DELETE /cad/gripper_elements/{id}, 252

/logs

GET /logs, 288
GET /logs/{log}, 289

/nodes

GET /nodes, 271
GET /nodes/{node}, 272
GET /nodes/{node}/services, 272
GET /nodes/{node}/services/{service}, 273
GET /nodes/{node}/status, 274
PUT /nodes/{node}/services/{service}, 274

/pipelines

GET /pipelines, 284
GET /pipelines/{pipeline}, 285
GET /pipelines/{pipeline}/nodes, 275
GET /pipelines/{pipeline}/nodes/{node}, 276
GET /pipelines/{pipeline}/nodes/{node}/parameters,

277

GET /pipelines/{pipeline}/nodes/{node}/parameters/{param},
279

GET /pipelines/{pipeline}/nodes/{node}/services,
281

GET /pipelines/{pipeline}/nodes/{node}/services/{service},
282

GET /pipelines/{pipeline}/nodes/{node}/status,
283

PUT /pipelines/{pipeline}/nodes/{node}/parameters,
278

PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param},
280

PUT /pipelines/{pipeline}/nodes/{node}/services/{service},
283

/system

GET /system, 290
GET /system/backup, 291
GET /system/disk_info, 292
GET /system/dns, 293
GET /system/license, 294
GET /system/network, 295
GET /system/network/settings, 295

GET /system/pipelines, 285
GET /system/pipelines/config/{pipeline}, 285
GET /system/rollback, 297
GET /system/time, 297
GET /system/ui_lock, 298
GET /system/update, 299
POST /system/backup, 292
POST /system/license, 294
POST /system/ui_lock, 299
POST /system/update, 300
PUT /system/dns, 293
PUT /system/network/settings, 296
PUT /system/pipelines/config/{pipeline}, 286
PUT /system/reboot, 296
PUT /system/rollback, 297
PUT /system/time, 298
DELETE /system/pipelines/config/{pipeline},

286

DELETE /system/ui_lock, 299

/templates

GET /templates/rc_boxpick, 113
GET /templates/rc_boxpick/{id}, 113
GET /templates/rc_cadmatch, 183
GET /templates/rc_cadmatch/{id}, 184
GET /templates/rc_silhouettematch, 149
GET /templates/rc_silhouettematch/{id}, 150
PUT /templates/rc_boxpick/{id}, 114
PUT /templates/rc_cadmatch/{id}, 184
PUT /templates/rc_silhouettematch/{id}, 150
DELETE /templates/rc_boxpick/{id}, 114
DELETE /templates/rc_cadmatch/{id}, 185
DELETE /templates/rc_silhouettematch/{id},

151

/userspace

GET /userspace, 287

Roboception GmbH

Manual: rc_cube

350 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

Index

Index

Symbols

|userspace|
examples, 333

3D coordinates, 36
disparity image, 36

3D modeling, 36
3D object detection, 151

A

acquisition mode
blaze, 50
disparity image, 39

AcquisitionAlternateFilter
GenICam, 262

AcquisitionFrameRate
GenICam, 258

AcquisitionMultiPartMode
GenICam, 262

active partition, 335
AdaptiveOut1

auto exposure mode, 30
ambiguity filter

blaze, 54
ambiguity filter threshold

blaze, 54
AprilTag, 73

pose estimation, 75
re-identification, 76
return codes, 84
services, 79

auto
exposure, 30

auto exposure, 29–31
auto exposure mode, 30

AdaptiveOut1, 30
Normal, 30
Out1High, 30

B

backup
settings, 334

BalanceRatio
GenICam, 259

BalanceRatioSelector
GenICam, 259

BalanceWhiteAuto
GenICam, 259

base-plane

SilhouetteMatch, 116
base-plane calibration

SilhouetteMatch, 116
Baseline

GenICam, 263
baseline, 25
Baumer

IpConfigTool, 16
bin picking, 85, 151
blaze, 48

acquisition mode, 50
ambiguity filter, 54
ambiguity filter threshold, 54
calibration, 17
exposure time, 50
fill-in, 51
gamma correction, 54
installation, 17
maximum distance, 51
minimum confidence, 52
minimum distance, 51
outlier removal, 53
outlier removal threshold, 53
segmentation, 52
spatial filter, 52
temporal filter, 52
temporal filter strength, 53
thermal drift correction, 54

BoxPick, 85
filling level, 58
grasp, 87
grasp sorting, 87
item models, 86
load carrier, 57, 227
parameters, 90
RECTANGLE, 86
region of interest, 235
return codes, 112
services, 96
status, 96
template api, 112
template deletion, 112
template download, 112
template upload, 112
texture, 86
TEXTURED_BOX, 86
views, 86

Roboception GmbH

Manual: rc_cube

351 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

Index

C

CADMatch, 151
collision check, 156
filling level, 58
grasp points, 152
load carrier, 57, 227
object detection, 154
object template, 152–154
parameters, 157
pose priors, 153
preferred orientation, 153
region of interest, 235
return codes, 182
services, 160
sorting, 154
status, 160
template api, 183
template deletion, 183
template download, 183
template upload, 183

calibration
blaze, 17
camera, 216
hand-eye calibration, 190
rectification, 25

calibration grid, 216
camera

calibration, 216
frame rate, 28
gamma, 29
parameters, 26, 28
Web GUI, 26

camera calibration
monocalibration, 222
parameters, 223
services, 223
stereo calibration, 220

camera connection
installation, 16

camera model, 25
Camera pipelines, 19, 24
Chunk data

GenICam, 261
collision check, 207, 242
CollisionCheck, 207

return codes, 215
compartment

load carrier, 230
ComponentEnable

GenICam, 258
ComponentIDValue

GenICam, 258
ComponentSelector

GenICam, 257
Confidence

GenICam image stream, 265
confidence, 36

minimum, 43

container, 332
conversions

GenICam image stream, 266

D

data model
REST-API, 300

data-type
REST-API, 300

definition
load carrier, 228

depth error
maximum, 43

depth image, 35, 36, 36, 48
Web GUI, 37, 49

DepthAcquisitionMode
GenICam, 263

DepthAcquisitionTrigger
GenICam, 263

DepthDoubleShot
GenICam, 264

DepthFill
GenICam, 264

DepthMaxDepth
GenICam, 264

DepthMaxDepthErr
GenICam, 264

DepthMinConf
GenICam, 264

DepthMinDepth
GenICam, 264

DepthQuality
GenICam, 263

DepthSeg
GenICam, 264

DepthSmooth
GenICam, 264

DepthStaticScene
GenICam, 264

detection
load carrier, 57
tag, 71

DHCP, 9
DHCP, 16
dimensions

load carrier, 228
disable parameter lock

GenICam, 261
discovery GUI, 14
Disparity

GenICam image stream, 265
disparity, 18, 25, 35
disparity error, 36
disparity image, 18, 35

3D coordinates, 36
acquisition mode, 39
double_shot, 41
exposure adaptation timeout, 40

Roboception GmbH

Manual: rc_cube

352 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

Index

parameters, 37, 49
quality, 40
smooth, 42
static_scene, 41
Web GUI, 37, 49

DNS, 9
Docker, 332
DOF, 9
double_shot

disparity image, 41
GenICam, 264

download
images, 25
log files, 336
point cloud, 37, 49
settings, 334

E

eki, 319
Error

GenICam image stream, 265
error, 36

hand-eye calibration, 196
exposure

auto, 29, 30
HDR, 29
manual, 29, 30

exposure adaptation timeout
disparity image, 40

exposure region, 31
exposure time, 26, 32

blaze, 50
maximum, 31

ExposureAuto
GenICam, 258

ExposureRegionHeight
GenICam, 262

ExposureRegionOffsetX
GenICam, 262

ExposureRegionOffsetY
GenICam, 262

ExposureRegionWidth
GenICam, 262

ExposureTime
GenICam, 259

ExposureTimeAutoMax
GenICam, 262

external reference frame
hand-eye calibration, 186

F

fill-in, 42
blaze, 51
GenICam, 264

filling level
BoxPick, 58
ItemPick, 58
LoadCarrier, 58

SilhouetteMatch, 58
firmware

mender, 334
rollback, 336
update, 334
version, 334

focal length, 25
focal length factor

GenICam, 263
FocalLengthFactor

GenICam, 263
fps, see frame rate
frame rate

camera, 28
GenICam, 258

G

Gain
GenICam, 259

gain factor, 26, 31, 32
gamma

camera, 29
gamma correction

blaze, 54
GenICam, 9
GenICam

AcquisitionAlternateFilter, 262
AcquisitionFrameRate, 258
AcquisitionMultiPartMode, 262
BalanceRatio, 259
BalanceRatioSelector, 259
BalanceWhiteAuto, 259
Baseline, 263
Chunk data, 261
ComponentEnable, 258
ComponentIDValue, 258
ComponentSelector, 257
DepthAcquisitionMode, 263
DepthAcquisitionTrigger, 263
DepthDoubleShot, 264
DepthFill, 264
DepthMaxDepth, 264
DepthMaxDepthErr, 264
DepthMinConf, 264
DepthMinDepth, 264
DepthQuality, 263
DepthSeg, 264
DepthSmooth, 264
DepthStaticScene, 264
disable parameter lock, 261
double_shot, 264
ExposureAuto, 258
ExposureRegionHeight, 262
ExposureRegionOffsetX, 262
ExposureRegionOffsetY, 262
ExposureRegionWidth, 262
ExposureTime, 259
ExposureTimeAutoMax, 262

Roboception GmbH

Manual: rc_cube

353 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

Index

fill-in, 264
focal length factor, 263
FocalLengthFactor, 263
frame rate, 258
Gain, 259
Height, 258
HeightMax, 258
LineSelector, 259
LineSource, 260
LineStatus, 260
LineStatusAll, 260
maximum depth error, 264
maximum distance, 264
minimum confidence, 264
minimum distance, 264
PixelFormat, 258, 265
PtpEnable, 260
quality, 263
RcExposureAutoAverageMax, 263
RcExposureAutoAverageMin, 263
Scan3dBaseline, 260
Scan3dCoordinateOffset, 261
Scan3dCoordinateScale, 261
Scan3dDistanceUnit, 260
Scan3dFocalLength, 260
Scan3dInvalidDataFlag, 261
Scan3dInvalidDataValue, 261
Scan3dOutputMode, 260
Scan3dPrinciplePointU, 260
Scan3dPrinciplePointV, 261
segmentation, 264
smooth, 264
static_scene, 264
system ready, 261
timestamp, 266
Width, 258
WidthMax, 258

GenICam image stream
Confidence, 265
conversions, 266
Disparity, 265
Error, 265
Intensity, 265
IntensityCombined, 265

GigE, 9
GigE Vision, 9
GigE Vision, see GenICam

IP address, 16
grasp computation, 85, 151
gripper CAD element api, 250
gripper CAD element deletion, 250
gripper CAD element download, 250
gripper CAD element upload, 250
GripperDB, 242

return codes, 250
gRPC, 327

H

hand-eye calibration
calibration, 190
error, 196
external reference frame, 186
mounting, 186
parameters, 196
robot frame, 186
slot, 193

Height
GenICam, 258

HeightMax
GenICam, 258

host name, 16

I

image
timestamp, 37, 49, 266

image noise, 31
images

download, 25
inactive partition, 335, 336
inner volume

load carrier, 228
installation, 13

blaze, 17
camera connection, 16

Intensity
GenICam image stream, 265

IntensityCombined
GenICam image stream, 265

IP, 9
IP address, 9
IP address, 15

GigE Vision, 16
IpConfigTool

Baumer, 16
ItemPick, 85

filling level, 58
grasp, 87
grasp sorting, 87
load carrier, 57, 227
parameters, 90
region of interest, 235
return codes, 112
services, 96
status, 96

L

LineSelector
GenICam, 259

LineSource
GenICam, 260

LineStatus
GenICam, 260

LineStatusAll
GenICam, 260

Link-Local, 9

Roboception GmbH

Manual: rc_cube

354 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

Index

Link-Local, 16
load carrier

BoxPick, 57, 227
compartment, 230
definition, 228
detection, 57
dimensions, 228
inner volume, 228
ItemPick, 57, 227
orientation prior, 228
pose, 228
rim, 228
SilhouetteMatch, 57, 227

load carrier detection, 57
load carrier model, 227
LoadCarrier, 57

filling level, 58
parameters, 60
return codes, 71
services, 62

LoadCarrierDB, 227
return codes, 235
services, 232

log files
download, 336

logs
REST-API, 288

M

MAC address, 9
MAC address, 16
manual exposure, 29, 30, 32
maximum

depth error, 43
exposure time, 31

maximum depth error, 43
GenICam, 264

maximum distance, 42
blaze, 51
GenICam, 264

mDNS, 9
mender

firmware, 334
minimum

confidence, 43
minimum confidence, 43

blaze, 52
GenICam, 264

minimum distance, 42
blaze, 51
GenICam, 264

monocalibration
camera calibration, 222

motion blur, 31
mounting

hand-eye calibration, 186

N

network configuration, 15
node

REST-API, 269, 284
Normal

auto exposure mode, 30
NTP, 9
NTP

synchronization, 330

O

object detection, 115, 151
OPC UA, 330
orientation prior

load carrier, 228
Out1High

auto exposure mode, 30
outlier removal

blaze, 53
outlier removal threshold

blaze, 53

P

parameter
REST-API, 270

parameters
camera, 26, 28
camera calibration, 223
disparity image, 37, 49
hand-eye calibration, 196
services, 34

PixelFormat
GenICam, 258, 265

point cloud, 36
download, 37, 49

portainer, 332
pose

load carrier, 228
pose estimation

AprilTag, 75
QR code, 75

PTP
synchronization, 260, 331

PtpEnable
GenICam, 260

Q

QR Code
return codes, 84

QR code, 72
pose estimation, 75
re-identification, 76
services, 79

quality
disparity image, 40
GenICam, 263

Roboception GmbH

Manual: rc_cube

355 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

Index

R

RcExposureAutoAverageMax
GenICam, 263

RcExposureAutoAverageMin
GenICam, 263

re-identification
AprilTag, 76
QR code, 76

reboot, 336
rectification, 25
reset, 14
REST-API, 267

data model, 300
data-type, 300
entry point, 267
logs, 288
node, 269, 284
parameter, 270
services, 270
status value, 270
system, 288
UserSpace, 287
version, 267

restore
settings, 334

return codes
AprilTag, 84
BoxPick, 112
CADMatch, 182
CollisionCheck, 215
GripperDB, 250
ItemPick, 112
LoadCarrier, 71
LoadCarrierDB, 235
QR Code, 84
RoiDB, 242
SilhouetteMatch, 148

rim
load carrier, 228

robot frame
hand-eye calibration, 186

ROI, 235
RoiDB, 235

return codes, 242
services, 237

rollback
firmware, 336

S

Scan3dBaseline
GenICam, 260

Scan3dCoordinateOffset
GenICam, 261

Scan3dCoordinateScale
GenICam, 261

Scan3dDistanceUnit
GenICam, 260

Scan3dFocalLength

GenICam, 260
Scan3dInvalidDataFlag

GenICam, 261
Scan3dInvalidDataValue

GenICam, 261
Scan3dOutputMode

GenICam, 260
Scan3dPrinciplePointU

GenICam, 260
Scan3dPrinciplePointV

GenICam, 261
SDK, 9
segmentation, 43

blaze, 52
GenICam, 264

Semi-Global Matching, see SGM
serial number, 14, 16
services

AprilTag, 79
camera calibration, 223
parameters, 34
QR code, 79
REST-API, 270
tag detection, 79

set
time, 331

settings
backup, 334
download, 334
restore, 334
upload, 334

SGM, 9
SGM, 18, 35
silhouette, 115
SilhouetteMatch, 115

base-plane, 116
base-plane calibration, 116
collision check, 123
detection of objects, 120
filling level, 58
grasp points, 118
load carrier, 57, 227
object template, 118
parameters, 124
preferred orientation, 119
region of interest, 118, 235
return codes, 148
services, 129
sorting, 120
status, 129
template api, 149
template deletion, 149
template download, 149
template upload, 149

slot
hand-eye calibration, 193

smooth
disparity image, 42

Roboception GmbH

Manual: rc_cube

356 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

Index

GenICam, 264
spatial filter

blaze, 52
static_scene

disparity image, 41
GenICam, 264

status value
REST-API, 270

stereo calibration
camera calibration, 220

stereo camera, 25
stereo matching, 18
Swagger UI, 315
synchronization

NTP, 330
PTP, 260, 331
time, 260, 330

system
REST-API, 288

system ready
GenICam, 261

T

tag detection, 71
families, 73
pose estimation, 75
re-identification, 76
services, 79

TCP, 9
temporal filter

blaze, 52
temporal filter strength

blaze, 53
texture, 35
thermal drift correction

blaze, 54
time

set, 331
synchronization, 260, 330

timestamp
GenICam, 266
image, 37, 49, 266

U

update
firmware, 334

upload
settings, 334

URI, 9
URL, 9
UserSpace, 332

Docker network, 333
gRPC, 333
installation, 332
REST-API, 287, 333
restrictions, 333
security, 332, 333

V

version
firmware, 334
REST-API, 267

W

Web GUI, 253
backup, 334
camera, 26
depth image, 37, 49
disparity image, 37, 49
logs, 336
update, 334

white balance, 32, 33
Width

GenICam, 258
WidthMax

GenICam, 258

X

XYZ+quaternion, 10
XYZABC, 10

Roboception GmbH

Manual: rc_cube

357 Rev: 24.01.1-2-g3fc53ce3

Status: Feb 09, 2024

rc_cube Edge Computer

ASSEMBLY AND OPERATING MANUAL

Roboception GmbH

Kaflerstrasse 2

81241 Munich info@roboception.de

Germany www.roboception.com

Tutorials: https://tutorials.roboception.com

GitHub: https://github.com/roboception

Documentation: https://doc.rc-visard.com

https://doc.rc-viscore.com

https://doc.rc-cube.com

https://doc.rc-randomdot.com

Shop: https://roboception.com/shop

For customer support, contact

+49 89 889 50 790

(09:00-17:00 CET) support@roboception.de

	Introduction
	Overview
	Warranty
	Applicable standards
	Interfaces

	Glossary

	Safety
	General warnings
	Intended use

	Installation
	Software license
	Power up
	Discovery of rc_cube devices
	Resetting configuration

	Network configuration
	Host name
	Automatic configuration (factory default)
	Manual configuration

	Connection of cameras
	Basler blaze sensors

	Measurement principles
	Stereo vision

	Camera pipelines
	Configuration of camera pipelines
	Configuration of connected cameras

	Software modules
	3D camera modules
	Camera
	Stereo matching
	Blaze

	Detection modules
	LoadCarrier
	TagDetect
	ItemPick and BoxPick
	SilhouetteMatch
	CADMatch

	Configuration modules
	Hand-eye calibration
	CollisionCheck
	Camera calibration
	IO and Projector Control

	Database modules
	LoadCarrierDB
	RoiDB
	GripperDB

	Interfaces
	Web GUI
	Accessing the Web GUI
	Exploring the Web GUI
	Web GUI access control
	Downloading camera images
	Downloading depth images and point clouds

	GigE Vision 2.0/GenICam image interface
	GigE Vision ports
	Important GenICam parameters
	Important standard GenICam features
	Custom GenICam features of the rc_cube
	Chunk data
	Provided image streams
	Image stream conversions

	REST-API interface
	General API structure
	Migration from API version 1
	Available resources and requests
	Data type definitions
	Swagger UI

	KUKA Ethernet KRL Interface
	Ethernet connection configuration
	Generic XML structure
	Services
	Parameters
	Migration to firmware version 22.01
	Example applications
	Troubleshooting

	gRPC image stream interface
	gRPC service definition
	Image stream conversions
	Example client

	OPC UA interface
	Time synchronization
	NTP
	PTP
	Setting time manually

	UserSpace
	Configuration
	Enable UserSpace
	Disable UserSpace
	Reset UserSpace

	Network access to UserSpace applications
	Examples
	Interfaces
	Restrictions

	Maintenance
	Creating and restoring backups of settings
	Updating the firmware
	Restoring the previous firmware version
	Rebooting the rc_cube
	Updating the software license
	Downloading log files

	Troubleshooting
	Camera-image issues
	Depth/Disparity, error, and confidence image issues
	GigE Vision/GenICam issues

	Contact
	Support
	Downloads
	Address

	Appendix
	Pose formats
	Rotation matrix and translation vector
	ABB pose format
	FANUC XYZ-WPR format
	Franka Emika Pose Format
	Fruitcore HORST pose format
	Kawasaki XYZ-OAT format
	KUKA XYZ-ABC format
	Mitsubishi XYZ-ABC format
	Universal Robots pose format
	Yaskawa Pose Format

	HTTP Routing Table
	Index

